Jet electrolyte micromachining (JEMM) exploits water-jet-assisted electrochemistry to achieve metal processing with spatial localization, precision, and flexibility. Currently, JEMM enables both micromilling and deposition, with the manufacturing precision and efficiency limited by the preparation and installation of the microscale tool electrodes (typically > 100 μm). Here, we develop a facile and low-cost platform for integrated in situ micro-subtractive and additive JEMM. Our technology is capable of machining micrometric grooves and pillars with controllable length scales (>20 μm) and topologies (patterns or spatial geometries) on metallic substrates. The integrated platform pumps electrolyte toward a workpiece through a nozzle to perform multiple tasks on the same setup, including micronozzle tool preparation, subtractive manufacturing, and additive manufacturing. We achieve this by controlling electrode polarity and electrolyte. We demonstrate our platform for microfabrication of grooves having a variety of widths ranging from 20 to 100 μm when working in the subtractive JEMM mode. In the additive JEMM mode, we demonstrate the fabrication of complex three-dimensional high-aspect-ratio micropillars having customized geometries beyond what is currently available with conventional methods. The proposed technology enables precise, controllable, efficient, and scalable additive and subtractive micromanufacturing for a plethora of applications.

1.
J.
Kozak
,
K. P.
Rajurkar
, and
R.
Balkrishna
, “
Study of electrochemical jet machining process
,”
J. Manuf. Sci. Eng.-Trans. ASME
118
,
490
(
1996
).
2.
E. M.
Zimmerman
, “
Method of jet plating
,” U.S. patent 2873232A (10 February
1959
).
3.
A.
Speidela
,
J.
Mitchell-Smitha
,
D. A.
Walshb
,
M.
Hirscha
, and
A.
Clarea
, “
Electrolyte jet machining of titanium alloys using novel electrolyte solutions
,”
Procedia CIRP
42
,
367
(
2016
).
4.
M.
Hackert-OschäTzchen
,
G.
Meichsner
,
M.
Zinecker
,
A.
Martin
, and
A.
Schubert
, “
Micro machining with continuous electrolytic free jet
,”
Precision Eng.
36
,
612
(
2012
).
5.
W.
Natsu
,
T.
Ikeda
, and
M.
Kunieda
, “
Generating complicated surface with electrolyte jet machining
,”
Precision Eng.
31
,
33
(
2007
).
6.
J.
Mitchell-Smith
,
A.
Speidel
,
J.
Gaskell
, and
A. T.
Clare
, “
Energy distribution modulation by mechanical design for electrochemical jet processing techniques
,”
Int. J. Mach. Tool. Manuf.
122
,
32
(
2017
).
7.
M.
Kunieda
,
R.
Katoh
, and
Y.
Mori
, “
Rapid prototyping by selective electrodeposition using electrolyte jet
,”
CIRP Ann.
47
,
161
(
1998
).
8.
G. F.
Wang
,
Z. J.
Tian
,
Z. D.
Liu
,
L. D.
Shen
, and
J.
Zhu
, “
Preparation of nickel parts by jet electro-deposition technique based on templates and grinding
,”
Int. J. Electrochem. Sci.
10
,
6844
(
2015
).
9.
M. S.
Rajput
,
P. M.
Pandey
, and
S.
Jha
, “
Micromanufacturing by selective jet electrodeposition process
,”
Int. J. Adv. Manuf. Tech.
76
,
61
(
2015
).
10.
X.
Chen
,
X.
Liu
,
P.
Childs
,
N.
Brandon
, and
B.
Wu
, “
A low cost desktop electrochemical metal 3D printer
,”
Adv. Mater. Technol.
2
,
1700148
(
2017
).
11.
H.
Jie
and
M. F.
Yu
, “
Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds
,”
Science
329
,
313
(
2010
).
12.
S. K.
Seol
,
D.
Kim
,
S.
Lee
,
J.
Hyun Kim
 et al, “
Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures
,”
Small
11
,
3896
(
2015
).
13.
L.
Hirt
,
S.
Ihle
,
Z.
Pan
,
L.
Dorwling-Carter
, and
T.
Zambelli
, “
Template-free 3D microprinting of metals using a force-controlled nanopipette for layer-by-layer electrodeposition
,”
Adv. Mater.
28
,
2311
(
2016
).
14.
G.
Ercolano
,
C. V.
Nisselroy
,
T.
Merle
,
J.
Vrs
,
D.
Momotenko
,
W. W.
Koelmans
, and
T.
Zambelli
, “
Additive manufacturing of sub-micron to sub-mm metal structures with hollow AFM cantilevers
,”
Micromachines
11
,
6
(
2019
).
15.
G.
Ercolano
,
T.
Zambelli
,
C. V.
Nisselroy
,
D.
Momotenko
, and
W. W.
Koelmans
, “
Multiscale additive manufacturing of metal microstructures
,”
Adv. Eng. Mater.
22
,
1900961
(
2020
).
16.
D.
Momotenko
,
A.
Page
,
M.
Adobes-Vidal
, and
P. R.
Unwin
, “
Write–read 3D patterning with a dual-channel nanopipette
,”
ACS Nano
10
,
8871
(
2016
).
17.
T.
Kawanaka
and
M.
Kunieda
, “
Mirror-like finishing by electrolyte jet machining
,”
CIRP Ann.
64
,
237
(
2015
).
18.
H.
Moon
,
K.
Boyina
,
N.
Miljkovic
, and
W. P.
King
, “
Heat transfer enhancement of single-phase internal flows using shape optimization and additively manufactured flow structures
,”
Int. J. Heat Mass Transfer
177
,
121510
(
2021
).
19.
M.
Baytekin-Gerngross
,
M.-D.
Gerngross
,
J.
Carstensen
, and
R.
Adelung
, “
Making metal surfaces strong, resistant, and multifunctional by nanoscale-sculpturing
,”
Nanoscale Horizon
1
,
467
(
2016
).
20.
A.
Kamaraj
,
S.
Lewis
, and
M.
Sundaram
, “
Numerical study of localized electrochemical deposition for micro electrochemical additive manufacturing
,”
Procedia CIRP
42
,
788
(
2016
).
21.
M. S.
Rajput
,
P. M.
Pandey
, and
S.
Jha
, “
Modelling of high speed selective jet electrodeposition process
,”
J. Manuf. Process.
17
,
98
(
2015
).
22.
R. A.
Said
, “
Localized electro-deposition (LED): the march toward process development
,”
Nanotechnology
15
,
S649
(
2004
).
23.
J. C.
Lin
,
J. H.
Yang
,
T. K.
Chang
, and
S. B.
Jiang
, “
On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating
,”
Electrochim. Acta
54
,
5703
(
2009
).
24.
J.
Luo
,
X.
Fang
, and
D.
Zhu
, “
Jet electrochemical machining of multi-grooves by using tube electrodes in a row
,”
J. Mater. Process. Technol.
283
,
116705
(
2020
).
25.
C.
Guo
,
J.
Qian
, and
D.
Reynaerts
, “
Deterministic removal strategy for machine vision assisted scanning micro electrochemical flow cell
,”
J. Manuf. Process.
34
,
167
(
2018
).
26.
M.
Chen
,
Z.
Xu
,
J. H.
Kim
,
S. K.
Seol
, and
T. K.
Ji
, “
Meniscus-on-demand parallel 3D nanoprinting
,”
ACS Nano
12
,
4172
(
2018
).
27.
D.
Agonafer
,
M. S.
Spector
, and
N.
Miljkovic
, “
Materials and interface challenges in high vapor quality two-phase flow boiling research
,”
IEEE Trans. Electron. Packag. Manuf.
1
,
1
(
2021
).
28.
A. B.
Duncan
and
G. P.
Peterson
, “
Review of microscale heat transfer
,”
Appl. Mech. Rev.
47
,
397
(
1994
).
29.
R. V.
Erp
,
R.
Soleimanzadeh
,
L.
Nela
,
G.
Kampitsis
, and
E.
Matioli
, “
Co-designing electronics with microfluidics for more sustainable cooling
,”
Nature
585
,
211
(
2020
).
30.
J. H.
Reed
,
A. E.
Gonsalves
,
J. K.
Román
,
J.
Oh
, and
D. M.
Cropek
, “
Ultrascalable multifunctional nanoengineered copper and aluminum for antiadhesion and bactericidal applications
,”
ACS Appl. Bio-Mater.
2
,
2726
(
2019
).
31.
J.
Ma
,
S.
Sett
,
H.
Cha
,
X.
Yan
, and
N.
Miljkovic
, “
Recent developments, challenges, and pathways to stable dropwise condensation: A perspective
,”
Appl. Phys. Lett.
116
,
260501
(
2020
).
32.
D.
Wang
,
Q.
Sun
,
M. J.
Hokkanen
,
C.
Zhang
,
F. Y.
Lin
,
Q.
Liu
,
S. P.
Zhu
,
T.
Zhou
,
Q.
Chang
, and
B.
He
, “
Design of robust superhydrophobic surfaces
,”
Nature
582
,
55
59
(
2020
).

Supplementary Material

You do not currently have access to this content.