Bound states in the continuum (BIC) are highly confined, nonradiative modes that can exist in open structures, despite their potential compatibility and coupling with the radiation spectrum, and may give rise to resonances with arbitrary large lifetimes. Here, we study this phenomenon in layered materials featuring epsilon-near-zero constituents. Specifically, we outline a systematic procedure to synthesize quasi-BIC resonances at a given frequency, incidence angle, and polarization and investigate the role of certain critical parameters in establishing the quality factor of the resonances. Moreover, we also provide an insightful phenomenological interpretation in terms of the recently introduced concept of “photonic doping” and study the effects of the unavoidable material loss and dispersion. Our results indicate the possibility of synthesizing sharp resonances, for both transversely magnetic and electric polarizations, which are of potential interest for a variety of nanophotonics scenarios, including light trapping, optical sensing, and thermal radiation.

1.
J.
von Neumann
and
E. P.
Wigner
, “
Über merkwürdige diskrete eigenwerte
,” in
The Collected Works of Eugene Paul Wigner
(
Springer
,
1993
), pp.
291
293
.
2.
D. C.
Marinica
,
A. G.
Borisov
, and
S. V.
Shabanov
, “
Bound states in the continuum in photonics
,”
Phys. Rev. Lett.
100
,
183902
(
2008
).
3.
Y.
Plotnik
,
O.
Peleg
,
F.
Dreisow
,
M.
Heinrich
,
S.
Nolte
,
A.
Szameit
, and
M.
Segev
, “
Experimental observation of optical bound states in the continuum
,”
Phys. Rev. Lett.
107
,
183901
(
2011
).
4.
C. W.
Hsu
,
B.
Zhen
,
J.
Lee
,
S.-L.
Chua
,
S. G.
Johnson
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Observation of trapped light within the radiation continuum
,”
Nature
499
,
188
191
(
2013
).
5.
M. G.
Silveirinha
, “
Trapping light in open plasmonic nanostructures
,”
Phys. Rev. A
89
,
023813
(
2014
).
6.
F.
Monticone
and
A.
Alù
, “
Embedded photonic eigenvalues in 3D nanostructures
,”
Phys. Rev. Lett.
112
,
213903
(
2014
).
7.
S.
Lannebère
and
M. G.
Silveirinha
, “
Optical meta-atom for localization of light with quantized energy
,”
Nat. Commun.
6
,
8766
(
2015
).
8.
A.
Kodigala
,
T.
Lepetit
,
Q.
Gu
,
B.
Bahari
,
Y.
Fainman
, and
B.
Kanté
, “
Lasing action from photonic bound states in continuum
,”
Nature
541
,
196
199
(
2017
).
9.
M. V.
Rybin
,
K. L.
Koshelev
,
Z. F.
Sadrieva
,
K. B.
Samusev
,
A. A.
Bogdanov
,
M. F.
Limonov
, and
Y. S.
Kivshar
, “
High-Q supercavity modes in subwavelength dielectric resonators
,”
Phys. Rev. Lett.
119
,
243901
(
2017
).
10.
E. A.
Bezus
,
D. A.
Bykov
, and
L. L.
Doskolovich
, “
Bound states in the continuum and high-q resonances supported by a dielectric ridge on a slab waveguide
,”
Photonics Res.
6
,
1084
1093
(
2018
).
11.
K.
Koshelev
,
S.
Lepeshov
,
M.
Liu
,
A.
Bogdanov
, and
Y.
Kivshar
, “
Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum
,”
Phys. Rev. Lett.
121
,
193903
(
2018
).
12.
F.
Monticone
,
H. M.
Doeleman
,
W.
Den Hollander
,
A. F.
Koenderink
, and
A.
Alù
, “
Trapping light in plain sight: Embedded photonic eigenstates in zero-index metamaterials
,”
Laser Photonics Rev.
12
,
1700220
(
2018
).
13.
Z.
Sakotic
,
A.
Krasnok
,
N.
Cselyuszka
,
N.
Jankovic
, and
A.
Alù
, “
Berreman embedded eigenstates for narrow-band absorption and thermal emission
,”
Phys. Rev. Appl.
13
,
064073
(
2020
).
14.
C. W.
Hsu
,
B.
Zhen
,
A. D.
Stone
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Bound states in the continuum
,”
Nat. Rev. Mater.
1
,
16048
(
2016
).
15.
A.
Krasnok
,
D.
Baranov
,
H.
Li
,
M.-A.
Miri
,
F.
Monticone
, and
A.
Alù
, “
Anomalies in light scattering
,”
Adv. Opt. Photonics
11
,
892
951
(
2019
).
16.
S. I.
Azzam
and
A. V.
Kildishev
, “
Photonic bound states in the continuum: From basics to applications
,”
Adv. Opt. Mater.
9
,
2001469
(
2021
).
17.
I.
Liberal
and
N.
Engheta
, “
Near-zero refractive index photonics
,”
Nat. Photonics
11
,
149
158
(
2017
).
18.
J.
Wu
,
Z. T.
Xie
,
Y.
Sha
,
H. Y.
Fu
, and
Q.
Li
, “
Epsilon-near-zero photonics: Infinite potentials
,”
Photonics Res.
9
,
1616
1644
(
2021
).
19.
I.
Liberal
,
A. M.
Mahmoud
,
Y.
Li
,
B.
Edwards
, and
N.
Engheta
, “
Photonic doping of epsilon-near-zero media
,”
Science
355
,
1058
1062
(
2017
).
20.
S.
Savoia
,
G.
Castaldi
,
V.
Galdi
,
A.
Alù
, and
N.
Engheta
, “
Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers
,”
Phys. Rev. B
89
,
085105
(
2014
).
21.
A.
Alù
,
M. G.
Silveirinha
,
A.
Salandrino
, and
N.
Engheta
, “
Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern
,”
Phys. Rev. B
75
,
155410
(
2007
).
22.
T.
Christopoulos
,
O.
Tsilipakos
,
G.
Sinatkas
, and
E. E.
Kriezis
, “
On the calculation of the quality factor in contemporary photonic resonant structures
,”
Opt. Express
27
,
14505
14522
(
2019
).
23.
M. H.
Javani
and
M. I.
Stockman
, “
Real and imaginary properties of epsilon-near-zero materials
,”
Phys. Rev. Lett.
117
,
107404
(
2016
).
24.
J.
Kim
,
A.
Dutta
,
G. V.
Naik
,
A. J.
Giles
,
F. J.
Bezares
,
C. T.
Ellis
,
J. G.
Tischler
,
A. M.
Mahmoud
,
H.
Caglayan
,
O. J.
Glembocki
,
A. V.
Kildishev
,
J. D.
Caldwell
,
A.
Boltasseva
, and
N.
Engheta
, “
Role of epsilon-near-zero substrates in the optical response of plasmonic antennas
,”
Optica
3
,
339
346
(
2016
).
25.
A.
Paarmann
,
I.
Razdolski
,
S.
Gewinner
,
W.
Schöllkopf
, and
M.
Wolf
, “
Effects of crystal anisotropy on optical phonon resonances in midinfrared second harmonic response of SiC
,”
Phys. Rev. B
94
,
134312
(
2016
).
26.
S.
Savoia
,
G.
Castaldi
,
V.
Galdi
,
A.
Alù
, and
N.
Engheta
, “
PT-symmetry-induced wave confinement and guiding in ϵ-near-zero metamaterials
,”
Phys. Rev. B
91
,
115114
(
2015
).
27.
Z.
Sakotic
,
A.
Krasnok
,
N.
Cselyuszka
,
N.
Jankovic
, and
A.
Alù
, “
PT-symmetric cladding layers for high-Q Brewster modes and embedded eigenstates
,” in
Proceedings of the 13th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)
(
IEEE
,
2019
), pp.
X-357
X-359
.
28.
D. V.
Novitsky
,
A. S.
Shalin
,
D.
Redka
,
V.
Bobrovs
, and
A. V.
Novitsky
, “
Quasibound states in the continuum induced by PT symmetry breaking
,”
Phys. Rev. B
104
,
085126
(
2021
).
29.
S.
Savoia
,
C. A.
Valagiannopoulos
,
F.
Monticone
,
G.
Castaldi
,
V.
Galdi
, and
A.
Alù
, “
Magnified imaging based on non-Hermitian nonlocal cylindrical metasurfaces
,”
Phys. Rev. B
95
,
115114
(
2017
).
30.
M.
Moccia
,
G.
Castaldi
,
A.
Alù
, and
V.
Galdi
, “
Harnessing spectral singularities in non-Hermitian cylindrical structures
,”
IEEE Trans. Antennas Propag.
68
,
1704
1716
(
2020
).
31.
M.
Coppolaro
,
M.
Moccia
,
G.
Castaldi
,
N.
Engheta
, and
V.
Galdi
, “
Non-Hermitian doping of epsilon-near-zero media
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
13921
13928
(
2020
).
You do not currently have access to this content.