Normally, intensity patterns of vortex beams are closed rings such as Laguerre–Gaussian beams and Bessel–Gaussian beams. Recent studies showed that the vortex beams with open ring structures, namely, open vortex beams (OVBs), have non-trivial orbital angular momentum (OAM) spectra and optical forces and can be employed in many applications such as metrology and quantum information. However, the structural stability of OVBs, including the topological charge conservation and the intensity invariance, has not been studied yet. Here, we theoretically propose a generalized model of OVBs, using both geometrical ray-like trajectories and coherent wave-packets, and the structural stability of OVBs is validated by the geometrical envelope of ray bundles. Moreover, we experimentally demonstrated that such OVBs can be generated by a partial fork-grating (PFG). Our study reveals structural characteristics of OVBs, which lays a foundation for the OVB's potential applications in optical manipulation, optical metrology, etc.

1.
L.
Allen
,
M. W.
Beijersbergen
,
R. J. C.
Spreeuw
, and
J. P.
Woerdman
, “
Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes
,”
Phys. Rev. A
45
,
8185
8189
(
1992
).
2.
N. R.
Heckenberg
,
R.
McDuff
,
C. P.
Smith
, and
A. G.
White
, “
Generation of optical phase singularities by computer-generated holograms
,”
Opt. Lett.
17
,
221
223
(
1992
).
3.
V. V.
Kotlyar
,
A. A.
Almazov
,
S. N.
Khonina
,
V. A.
Soifer
,
H.
Elfstrom
, and
J.
Turunen
, “
Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate
,”
J. Opt. Soc. Am. A
22
,
849
861
(
2005
).
4.
G. C. G.
Berkhout
and
M. W.
Beijersbergen
, “
Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects
,”
Phys. Rev. Lett.
101
,
100801
(
2008
).
5.
Q.
Zhao
,
M.
Dong
,
Y.
Bai
, and
Y.
Yang
, “
Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer
,”
Photonics Res.
8
,
745
749
(
2020
).
6.
Y.
Yang
,
Q.
Zhao
,
L.
Liu
,
Y.
Liu
,
C.
Rosales-Guzmán
, and
C.-w.
Qiu
, “
Manipulation of orbital-angular-momentum spectrum using pinhole plates
,”
Phys. Rev. Appl.
12
,
064007
(
2019
).
7.
Y.
Wen
,
I.
Chremmos
,
Y.
Chen
,
Y.
Zhang
, and
S.
Yu
, “
Arbitrary multiplication and division of the orbital angular momentum of light
,”
Phys. Rev. Lett.
124
,
213901
(
2020
).
8.
J.
Wang
, “
Advances in communications using optical vortices
,”
Photonics Res.
4
,
B14
B28
(
2016
).
9.
L.
Torner
,
J. P.
Torres
, and
S.
Carrasco
, “
Digital spiral imaging
,”
Opt. Express
13
,
873
881
(
2005
).
10.
V.
D'Ambrosio
,
N.
Spagnolo
,
L.
Del Re
,
S.
Slussarenko
,
Y.
Li
,
L. C.
Kwek
,
L.
Marrucci
,
S. P.
Walborn
,
L.
Aolita
, and
F.
Sciarrino
, “
Photonic polarization gears for ultra-sensitive angular measurements
,”
Nat. Commun.
4
,
2432
(
2013
).
11.
Y.
Yang
,
Y.
Ren
,
M.
Chen
,
Y.
Arita
, and
C.
Rosales-Guzmán
, “
Optical trapping with structured light: A review
,”
Adv. Photonics
3
,
034001
(
2021
).
12.
A.
Mair
,
A.
Vaziri
,
G.
Weihs
, and
A.
Zeilinger
, “
Entanglement of the orbital angular momentum states of photons
,”
Nature
412
,
313
316
(
2001
).
13.
D.
Cozzolino
,
E.
Polino
,
M.
Valeri
,
G.
Carvacho
,
D.
Bacco
,
N.
Spagnolo
,
L. K. K.
Oxenløwe
, and
F.
Sciarrino
, “
Air-core fiber distribution of hybrid vector vortex-polarization entangled states
,”
Adv. Photonics
1
,
046005
(
2019
).
14.
Y.
Shen
,
X.
Wang
,
Z.
Xie
,
C.
Min
,
X.
Fu
,
Q.
Liu
,
M.
Gong
, and
X.
Yuan
, “
Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities
,”
Light: Sci. Appl.
8
,
90
(
2019
).
15.
J.
Leach
,
M. R.
Dennis
,
J.
Courtial
, and
M. J.
Padgett
, “
Vortex knots in light
,”
New J. Phys.
7
,
55
55
(
2005
).
16.
L.
Rego
,
K. M.
Dorney
,
N. J.
Brooks
,
Q. L.
Nguyen
,
C.-T.
Liao
,
J.
San Román
,
D. E.
Couch
,
A.
Liu
,
E.
Pisanty
,
M.
Lewenstein
,
L.
Plaja
,
H. C.
Kapteyn
,
M. M.
Murnane
, and
C.
Hernández-García
, “
Generation of extreme-ultraviolet beams with time-varying orbital angular momentum
,”
Science
364
,
6447
(
2019
).
17.
A.
Chong
,
C.
Wan
,
J.
Chen
, and
Q.
Zhan
, “
Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum
,”
Nat. Photonics
14
,
350
354
(
2020
).
18.
M.
Dong
,
C.
Zhao
,
Y.
Cai
, and
Y.
Yang
, “
Partially coherent vortex beams: Fundamentals and applications
,”
Sci. China Phys. Mech.
64
,
224201
(
2021
).
19.
Y.
Shen
,
X.
Yang
,
D.
Naidoo
,
X.
Fu
, and
A.
Forbes
, “
Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser
,”
Optica
7
,
820
831
(
2020
).
20.
M.
Born
,
E.
Wolf
,
A. B.
Bhatia
,
P. C.
Clemmow
,
D.
Gabor
,
A. R.
Stokes
,
A. M.
Taylor
,
P. A.
Wayman
, and
W. L.
Wilcock
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
, 7th ed. (
Cambridge University Press
,
1999
).
21.
M. A.
Alonso
and
M. R.
Dennis
, “
Ray-optical Poincaré sphere for structured Gaussian beams
,”
Optica
4
,
476
486
(
2017
).
22.
R.
Gutiérrez-Cuevas
,
S.
Wadood
,
A.
Vamivakas
, and
M.
Alonso
, “
Modal Majorana sphere and hidden symmetries of structured-Gaussian beams
,”
Phys. Rev. Lett.
125
,
123903
(
2020
).
23.
Y.
Shen
,
Z.
Wang
,
X.
Fu
,
D.
Naidoo
, and
A.
Forbes
, “
Su (2) Poincaré sphere: A generalized representation for multidimensional structured light
,”
Phys. Rev. A
102
,
031501
(
2020
).
24.
A.
Zannotti
,
C.
Denz
,
M. A.
Alonso
, and
M. R.
Dennis
, “
Shaping caustics into propagation-invariant light
,”
Nat. Commun.
11
,
3597
(
2020
).
25.
Y.
Shen
,
X.
Yang
,
X.
Fu
, and
M.
Gong
, “
Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable Su(2) geometric modes in a frequency-degenerate resonator
,”
Appl. Opt.
57
,
9543
9549
(
2018
).
26.
Z.
Wan
,
Z.
Wang
,
X.
Yang
,
Y.
Shen
, and
X.
Fu
, “
Digitally tailoring arbitrary structured light of generalized ray-wave duality
,”
Opt. Express
28
,
31043
31056
(
2020
).
27.
Y.
Shen
,
I.
Nape
,
X.
Yang
,
X.
Fu
,
M.
Gong
,
D.
Naidoo
, and
A.
Forbes
, “
Creation and control of high-dimensional multi-partite classically entangled light
,”
Light: Sci. Appl.
10
,
50
(
2021
).
28.
E.
Espíndola-Ramos
,
G.
Silva-Ortigoza
,
C. T.
Sosa-Sánchez
,
I.
Julián-Macías
,
A.
González-Juárez
,
O.
de Jesús Cabrera-Rosas
,
P.
Ortega-Vidals
,
C.
Rickenstorff-Parrao
, and
R.
Silva-Ortigoza
, “
Classical characterization of quantum waves: Comparison between the caustic and the zeros of the Madelung–Bohm potential
,”
J. Opt. Soc. Am. A
38
,
303
312
(
2021
).
29.
E.
Espíndola-Ramos
,
G.
Silva-Ortigoza
,
C. T.
Sosa-Sánchez
,
I.
Julián-Macías
,
O.
de Jesús Cabrera-Rosas
,
P.
Ortega-Vidals
,
A.
González-Juárez
,
R.
Silva-Ortigoza
,
M. P.
Velázquez-Quesada
, and
G. F. T.
del Castillo
, “
Paraxial optical fields whose intensity pattern skeletons are stable caustics
,”
J. Opt. Soc. Am. A
36
,
1820
1828
(
2019
).
30.
M. V.
Berry
and
K. T.
McDonald
, “
Exact and geometrical optics energy trajectories in twisted beams
,”
J. Opt. A: Pure Appl. Opt.
10
,
035005
(
2008
).
31.
X.
Ling
,
X.
Zhou
,
K.
Huang
,
Y.
Liu
,
C.-W.
Qiu
,
H.
Luo
, and
S.
Wen
, “
Recent advances in the spin Hall effect of light
,”
Rep. Prog. Phys.
80
,
066401
(
2017
).
32.
S. H.
Tao
,
X.-C.
Yuan
,
J.
Lin
,
X.
Peng
, and
H. B.
Niu
, “
Fractional optical vortex beam induced rotation of particles
,”
Opt. Express
13
,
7726
7731
(
2005
).
33.
S.
Franke-Arnold
,
S. M.
Barnett
,
E.
Yao
,
J.
Leach
,
J.
Courtial
, and
M.
Padgett
, “
Uncertainty principle for angular position and angular momentum
,”
New J. Phys.
6
,
103
103
(
2004
).
34.
A.
Volyar
,
M.
Bretsko
,
Y.
Akimova
, and
Y.
Egorov
, “
Orbital angular momentum and informational entropy in perturbed vortex beams
,”
Opt. Lett.
44
,
5687
5690
(
2019
).
35.
J.
Leach
,
B.
Jack
,
J.
Romero
,
A. K.
Jha
,
A. M.
Yao
,
S.
Franke-Arnold
,
D. G.
Ireland
,
R. W.
Boyd
,
S. M.
Barnett
, and
M. J.
Padgett
, “
Quantum correlations in optical angle–orbital angular momentum variables
,”
Science
329
,
662
665
(
2010
).
36.
J.
Hamazaki
,
Y.
Mineta
,
K.
Oka
, and
R.
Morita
, “
Direct observation of Gouy phase shift in a propagating optical vortex
,”
Opt. Express
14
,
8382
8392
(
2006
).
37.
D. M.
Cottrell
,
J. A.
Davis
, and
T. J.
Hernandez
, “
Fraunhofer diffraction of a partially blocked spiral phase plate
,”
Opt. Express
19
,
12873
12878
(
2011
).
38.
J. A.
Davis
and
J. B.
Bentley
, “
Azimuthal prism effect with partially blocked vortex-producing lenses
,”
Opt. Lett.
30
,
3204
3206
(
2005
).
39.
Z.
Man
,
L.
Du
,
Y.
Zhang
,
C.
Min
,
S.
Fu
, and
X.
Yuan
, “
Focal and optical trapping behaviors of radially polarized vortex beam with broken axial symmetry
,”
AIP Adv.
7
,
065109
(
2017
).
40.
G.
Xie
,
H.
Song
,
Z.
Zhao
,
G.
Milione
,
Y.
Ren
,
C.
Liu
,
R.
Zhang
,
C.
Bao
,
L.
Li
,
Z.
Wang
,
K.
Pang
,
D.
Starodubov
,
B.
Lynn
,
M.
Tur
, and
A. E.
Willner
, “
Using a complex optical orbital-angular-momentum spectrum to measure object parameters
,”
Opt. Lett.
42
,
4482
4485
(
2017
).
41.
S.
Wei
,
D.
Wang
,
J.
Lin
, and
X.
Yuan
, “
Demonstration of orbital angular momentum channel healing using a fabry-pérot cavity
,”
Opto-Electron. Adv.
1
,
180006
(
2018
).
42.
X.
Li
,
L.
Ma
,
J.
Zeng
,
Z.
Dong
,
L.
Liu
,
F.
Wang
,
B. J.
Hoenders
,
Y.
Cai
, and
X.
Liu
, “
Determining the topological charge of an obstructed vortex beam via reconstructed phase distribution
,”
Appl. Phys. Lett.
117
,
251103
(
2020
).
43.
S.
Qiu
,
Y.
Ren
,
T.
Liu
,
Z.
Liu
,
C.
Wang
,
Y.
Ding
,
Q.
Sha
, and
H.
Wu
, “
Directly observing the skew angle of a Poynting vector in an OAM carrying beam via angular diffraction
,”
Opt. Lett.
46
,
3484
3487
(
2021
).
44.
Table of Integrals, Series, and Products
, edited by
D.
Zwillinger
,
V.
Moll
,
I.
Gradshteyn
, and
I.
Ryzhik
, 8th ed. (
Academic Press
,
Boston
,
2014
), pp.
637
775
.
45.
V. V.
Kotlyar
,
A. A.
Kovalev
, and
A. V.
Volyar
, “
Topological charge of a linear combination of optical vortices: Topological competition
,”
Opt. Express
28
,
8266
8281
(
2020
).
46.
G.
Gbur
, “
Fractional vortex Hilbert's hotel
,”
Optica
3
,
222
225
(
2016
).
47.
V. V.
Kotlyar
,
A. A.
Kovalev
,
A. G.
Nalimov
, and
A. P.
Porfirev
, “
Evolution of an optical vortex with an initial fractional topological charge
,”
Phys. Rev. A
102
,
023516
(
2020
).
48.
V.
Volostnikov
,
S.
Kotova
, and
S.
Kishkin
, “
Spiral light beams: Characteristics and applications
,”
J. Phys.: Conf. Ser.
536
,
012001
(
2014
).
49.
X. Z.
Li
,
H. X.
Ma
,
H.
Zhang
,
M. M.
Tang
,
H. H.
Li
,
J.
Tang
, and
Y. S.
Wang
, “
Is it possible to enlarge the trapping range of optical tweezers via a single beam?
,”
Appl. Phys. Lett.
114
,
081903
(
2019
).
50.
Y. A.
Kravtsov
and
Y. I.
Orlov
, “
Caustics, catastrophes, and wave fields
,”
Sov. Phys. Usp.
26
,
1038
1058
(
1983
).

Supplementary Material

You do not currently have access to this content.