A room-temperature terahertz (THz) detector based on a thermoelectric frequency selective surface (FSS) has been numerically simulated, designed, fabricated, and tested. The FSS has been fabricated from a 150 nm thin Bi88Sb12 thermoelectric film with the engraved periodic Greek crosses. The detector prototype has been tested under the 0.14 THz radiation exposure and showed a voltage response due to the photo-thermoelectric effect up to 0.13–0.18 mV, and voltage responsivity equal to 14–20 mV/W. The detector based on the FSS has shown voltage responsivity up to three times higher in comparison with the detector based on the continuous film. Thermal imaging has shown a temperature increase in the FSS up to 1.5 K under the THz exposure. The obtained results demonstrate prospects for utilization of the Bi88Sb12 FSS detector as a low cost, compact, high-speed, highly sensitive room-temperature THz detector.

1.
Terahertz Spectroscopy. A Cutting Edge Technology
, edited by
J.
Uddin
(
IntechOpen
,
2017
), p.
318
.
2.
L.
Afsah-Hejri
,
E.
Akbari
,
A.
Toudeshki
,
T.
Homayouni
,
A.
Alizadeh
, and
R.
Ehsani
, “
Terahertz spectroscopy and imaging: A review on agricultural applications
,”
Comput. Electron. Agric.
177
,
105628
(
2020
).
3.
L.
Yu
,
L.
Hao
,
T.
Meiqiong
,
H.
Jiaoqi
,
L.
Wei
,
D.
Jinying
,
C.
Xueping
,
F.
Weiling
, and
Z.
Yang
, “
The medical application of terahertz technology in non-invasive detection of cells and tissues: Opportunities and challenges
,”
RSC Adv.
9
,
9354
9363
(
2019
).
4.
P.
Bawuah
and
J. A.
Zeitler
, “
Advances in terahertz time-domain spectroscopy of pharmaceutical solids: A review
,”
TrAC Trends Anal. Chem.
139
,
116272
(
2021
).
5.
S.
Zhong
, “
Progress in terahertz nondestructive testing: A review
,”
Front. Mech. Eng.
14
,
273
281
(
2019
).
6.
A.
Rogalski
,
Infrared and Terahertz Detectors
(
CRC Press
,
2019
).
7.
R. A.
Lewis
, “
A review of terahertz detectors
,”
J. Phys. D: Appl. Phys.
52
,
433001
(
2019
).
8.
J.
Mao
,
Z.
Liu
, and
Z.
Ren
, “
Size effect in thermoelectric materials
,”
npj Quantum Mater.
1
,
16028
(
2016
).
9.
A. K.
Huhn
,
G.
Spickermann
,
A.
Ihring
,
U.
Schinkel
,
H.-G.
Meyer
, and
P.
Haring Bolivar
, “
Fast antenna-coupled terahertz detectors based on uncooled thermoelements
,” in
2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves
(
IEEE
,
2012
), pp.
1
3
.
10.
A. K.
Huhn
,
G.
Spickermann
,
A.
Ihring
,
U.
Schinkel
,
H.-G.
Meyer
, and
P.
Haring Bolívar
, “
Uncooled antenna-coupled terahertz detectors with 22 s response time based on BiSb/Sb thermocouples
,”
Appl. Phys. Lett.
102
,
121102
(
2013
).
11.
A.
Ihring
,
E.
Kessler
,
U.
Dillner
,
F.
Haenschke
,
U.
Schinkel
,
M.
Schubert
,
R.
Haehle
, and
H.-G.
Meyer
, “
High performance uncooled THz sensing structures based on antenna-coupled air-bridges
,”
Microelectron. Eng.
98
,
512
515
(
2012
).
12.
A. D.
Zaitsev
,
P. S.
Demchenko
,
D. V.
Zykov
,
E. A.
Korotina
,
E. S.
Makarova
,
I. L.
Tkhorzhevskiy
,
A. S.
Tukmakova
,
N. S.
Kablukova
,
A. V.
Asach
,
A. V.
Novotelnova
, and
M. K.
Khodzitsky
, “
Optical and galvanomagnetic properties of bi1-xsbx thin films in the terahertz frequency range
,”
Appl. Sci.
10
,
2724
(
2020
).
13.
M. V.
Suslov
,
V. A.
Komarov
, and
A. V.
Suslov
, “
Thermoelectric power of Bi92Sb8 and Bi85Sb15 thin films
,”
Semiconductors
51
,
862
903
(
2017
).
14.
M. V.
Suslov
,
V. M.
Grabov
,
V. A.
Komarov
,
E. V.
Demidov
,
S. V.
Senkevich
, and
A. V.
Suslov
, “
The thermoelectric power of Bi1–xSbx films (0 ≤ x ≤ 0.15) on mica and polyimide substrates in the temperature range of 77–300 K
,”
Semiconductors
53
,
589
592
(
2019
).
15.
M. K.
Khodzitsky
,
P. S.
Demchenko
,
D. V.
Zykov
,
A. D.
Zaitsev
,
E. S.
Makarova
,
A. S.
Tukmakova
,
I. L.
Tkhorzhevskiy
,
A. V.
Asach
,
A. V.
Novotelnova
, and
N. S.
Kablukova
, “
Photothermal, photoelectric, and photothermoelectric effects in Bi-Sb thin films in the terahertz frequency range at room temperature
,”
Photonics
8
,
76
(
2021
).
16.
A.
Tukmakova
,
I.
Tkhorzhevskiy
,
A.
Sedinin
,
A.
Asach
,
A.
Novotelnova
,
N.
Kablukova
,
P.
Demchenko
,
A.
Zaitsev
,
D.
Zykov
, and
M.
Khodzitsky
, “
FEM simulation of frequency-selective surface based on thermoelectric Bi-Sb thin films for THz detection
,”
Photonics
8
,
119
(
2021
).
17.
A.
Zaitsev
,
D.
Zykov
,
P.
Demchenko
,
M.
Novoselov
,
R.
Nazarov
,
M.
Masyukov
,
E.
Makarova
,
A.
Tukmakova
,
A.
Asach
,
A.
Novotelnova
,
N.
Kablukova
, and
M.
Khodzitsky
, “
Experimental investigation of optically controlled topological transition in bismuth-mica structure
,”
Sci. Rep.
11
,
13653
(
2021
).
18.
S.
Castilla
,
B.
Terrés
,
M.
Autore
,
L.
Viti
,
J.
Li
,
A. Y.
Nikitin
,
I.
Vangelidis
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Lidorikis
,
M. S.
Vitiello
,
R.
Hillenbrand
,
K.-J.
Tielrooij
, and
F. H.
Koppens
, “
Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction
,”
Nano Lett.
19
,
2765
2773
(
2019
).
19.
F.
Volklein
and
E.
Kessler
, “
Thermal conductivity and thermoelectric figure of merit of Bil-xSbx, films with 0 < x ≤ 0.3
,”
Phys. Status Solidi
143
,
121
130
(
1987
).
20.
V.
Linseis
,
F.
Völklein
,
H.
Reith
,
K.
Nielsch
, and
P.
Woias
, “
Advanced platform for the in-plane zt measurement of thin films
,”
Rev. Sci. Instrum.
89
,
015110
(
2018
).
21.
ASTM E1543-00
,
Standard Test Method for Noise Equivalent Temperature Difference of Thermal Imaging Systems
(
ACTM International
,
2012
), pp.
1
4
.
You do not currently have access to this content.