We present experimental and theoretical results on the measurements of the oscillation frequency in a dipole trap based on the spin current in a sodium spinor Bose–Einstein condensate. The spin current is induced under different magnetic field intensities. The oscillation of the spin components in the dipole trap is strongly enhanced by a radio frequency pulse. Both theoretical analysis and experimental results demonstrate that this method can be used to efficiently measure the trap frequencies. Since this mechanism is independent of atomic species, this study is promising to be extended to rubidium and other optical-trappable quantum gases.

1.
J.
Miller
,
R.
Cline
, and
D.
Heinzen
, “
Far-off-resonance optical trapping of atoms
,”
Phys. Rev. A
47
,
R4567
(
1993
).
2.
R.
Grimm
,
M.
Weidemüller
, and
Y. B.
Ovchinnikov
, “
Optical dipole traps for neutral atoms
,”
Adv. At., Mol., Opt. Phys.
42
,
95
170
(
2000
).
3.
M.
Barrett
,
J.
Sauer
, and
M.
Chapman
, “
All-optical formation of an atomic Bose-Einstein condensate
,”
Phys. Rev. Lett.
87
,
010404
(
2001
).
4.
T.
Kinoshita
,
T.
Wenger
, and
D. S.
Weiss
, “
All-optical Bose-Einstein condensation using a compressible crossed dipole trap
,”
Phys. Rev. A
71
,
011602
(
2005
).
5.
J.-F.
Clément
,
J.-P.
Brantut
,
M.
Robert-De-Saint-Vincent
,
R. A.
Nyman
,
A.
Aspect
,
T.
Bourdel
, and
P.
Bouyer
, “
All-optical runaway evaporation to Bose-Einstein condensation
,”
Phys. Rev. A
79
,
061406
(
2009
).
6.
A.
Urvoy
,
Z.
Vendeiro
,
J.
Ramette
,
A.
Adiyatullin
, and
V.
Vuletić
, “
Direct laser cooling to Bose-Einstein condensation in a dipole trap
,”
Phys. Rev. Lett.
122
,
203202
(
2019
).
7.
P.
Solano
,
Y.
Duan
,
Y.-T.
Chen
,
A.
Rudelis
,
C.
Chin
, and
V.
Vuletić
, “
Strongly correlated quantum gas prepared by direct laser cooling
,”
Phys. Rev. Lett.
123
,
173401
(
2019
).
8.
S.
Saskin
,
J.
Wilson
,
B.
Grinkemeyer
, and
J. D.
Thompson
, “
Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array
,”
Phys. Rev. Lett.
122
,
143002
(
2019
).
9.
W. B.
Cairncross
,
J. T.
Zhang
,
L. R.
Picard
,
Y.
Yu
,
K.
Wang
, and
K.-K.
Ni
, “
Assembly of a rovibrational ground state molecule in an optical tweezer
,”
Phys. Rev. Lett.
126
,
123402
(
2021
).
10.
L.
Zhao
,
J.
Jiang
,
T.
Tang
,
M.
Webb
, and
Y.
Liu
, “
Antiferromagnetic spinor condensates in a two-dimensional optical lattice
,”
Phys. Rev. Lett.
114
,
225302
(
2015
).
11.
J. H.
Kang
and
Y-i
Shin
, “
Topological Floquet engineering of a one-dimensional optical lattice via resonant shaking with two harmonic frequencies
,”
Phys. Rev. A
102
,
063315
(
2020
).
12.
F.
Mei
,
J.-B.
You
,
D.-W.
Zhang
,
X.
Yang
,
R.
Fazio
,
S.-L.
Zhu
, and
L. C.
Kwek
, “
Topological insulator and particle pumping in a one-dimensional shaken optical lattice
,”
Phys. Rev. A
90
,
063638
(
2014
).
13.
J.
Nguyen
,
M.
Tsatsos
,
D.
Luo
,
A.
Lode
,
G.
Telles
,
V.
Bagnato
, and
R.
Hulet
, “
Parametric excitation of a Bose-Einstein condensate: From Faraday waves to granulation
,”
Phys. Rev. X
9
,
011052
(
2019
).
14.
A.
Farolfi
,
D.
Trypogeorgos
,
C.
Mordini
,
G.
Lamporesi
, and
G.
Ferrari
, “
Observation of magnetic solitons in two-component Bose-Einstein condensates
,”
Phys. Rev. Lett.
125
,
030401
(
2020
).
15.
X.
Chai
,
D.
Lao
,
K.
Fujimoto
,
R.
Hamazaki
,
M.
Ueda
, and
C.
Raman
, “
Magnetic solitons in a spin-1 Bose-Einstein condensate
,”
Phys. Rev. Lett.
125
,
030402
(
2020
).
16.
M.
Vengalattore
,
S.
Leslie
,
J.
Guzman
, and
D.
Stamper-Kurn
, “
Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate
,”
Phys. Rev. Lett.
100
,
170403
(
2008
).
17.
K.
Jiménez-García
,
A.
Invernizzi
,
B.
Evrard
,
C.
Frapolli
,
J.
Dalibard
, and
F.
Gerbier
, “
Spontaneous formation and relaxation of spin domains in antiferromagnetic spin-1 condensates
,”
Nat. Commun.
10
,
1422
(
2019
).
18.
J.
Stenger
,
S.
Inouye
,
D.
Stamper-Kurn
,
H.-J.
Miesner
,
A.
Chikkatur
, and
W.
Ketterle
, “
Spin domains in ground-state Bose–Einstein condensates
,”
Nature
396
,
345
348
(
1998
).
19.
P. K.
Molony
,
P. D.
Gregory
,
Z.
Ji
,
B.
Lu
,
M. P.
Köppinger
,
C. R.
Le Sueur
,
C. L.
Blackley
,
J. M.
Hutson
, and
S. L.
Cornish
, “
Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state
,”
Phys. Rev. Lett.
113
,
255301
(
2014
).
20.
S.
Friebel
,
C.
D'Andrea
,
J.
Walz
,
M.
Weitz
, and
T.
Hänsch
, “
CO2-laser optical lattice with cold rubidium atoms
,”
Phys. Rev. A
57
,
R20
(
1998
).
21.
J.
Joykutty
,
V.
Mathur
,
V.
Venkataraman
, and
V.
Natarajan
, “
Direct measurement of the oscillation frequency in an optical-tweezers trap by parametric excitation
,”
Phys. Rev. Lett.
95
,
193902
(
2005
).
22.
L.
Pedersen
and
H.
Flyvbjerg
, “
Comment on ‘Direct measurement of the oscillation frequency in an optical-tweezers trap by parametric excitation
’,”
Phys. Rev. Lett.
98
,
189801
(
2007
).
23.
N. R. F. Y.
Deng
and
J.
Bechhoefer
, “
Comment on' Direct measurement of the oscillation frequency in an optical-tweezers trap by parametric excitation
,”
Phys. Rev. Lett.
98
,
189802
(
2007
).
24.
Y.
Eto
,
M.
Sadgrove
,
S.
Hasegawa
,
H.
Saito
, and
T.
Hirano
, “
Control of spin current in a Bose gas by periodic application of π pulses
,”
Phys. Rev. A
90
,
013626
(
2014
).
25.
S.
Koller
,
A.
Groot
,
P.
Bons
,
R.
Duine
,
H.
Stoof
, and
P.
van der Straten
, “
Quantum enhancement of spin drag in a Bose gas
,”
New J. Phys.
17
,
113026
(
2015
).
26.
R.
Duine
and
H.
Stoof
, “
Spin drag in noncondensed Bose gases
,”
Phys. Rev. Lett.
103
,
170401
(
2009
).
27.
A.
Corney
,
Atomic and Laser Spectroscopy
(
Clarendon Press
,
1977
).
28.
E.
Arimondo
,
M.
Inguscio
, and
P.
Violino
, “
Experimental determinations of the hyperfine structure in the alkali atoms
,”
Rev. Mod. Phys.
49
,
31
(
1977
).
You do not currently have access to this content.