The ion storage mechanism and ion concentration play crucial roles in determining the electrochemical energy storage performances of multi-ion-based batteries and/or capacitors. Here, we take δ-MnO2-A2SO4 (A = Li, Na, K) as an example system to explore the physical and chemical mechanisms related to electrochemical energy storage using experimental analysis and first-principles calculations. Among the studied systems, superior capacitance performance is found in δ-MnO2-Li2SO4 due to excellent mobility (migration barrier 0.168 eV) of lithium ions. Better cycling stability appears in δ-MnO2-K2SO4, which is attributed to larger adsorption energy (−0.655 eV) between potassium ions and δ-MnO2. Moreover, compared with a pure Li2SO4 electrolyte, our calculations suggest that incorporation of moderate Na2SO4 or K2SO4 into the Li2SO4 electrolyte could considerably elongate the cycling lifetime. Overdose of Na+ or K+ is, however, adverse to the capacitance performance as verified by our experiments. We argue that the dominance role of Na+ or K+ ions played in the hybrid electrolyte originates from the larger formation enthalpy and adsorption energy of Na+ or K+ when reacting with δ-MnO2 compared with those of Li+. Our findings suggest that understanding of the ion storage mechanism can provide useful clues for searching the proper ion concentration ratio, which takes advantages of individual ions in multi-ion-based δ-MnO2 electrochemical energy storage devices.

1.
L.
Zhang
,
J. J.
Zhang
, and
G. P.
Wang
,
Chem. Soc. Rev.
41
,
797
(
2012
).
2.
D.
Larcher
and
J.-M.
Tarascon
,
Nat. Chem.
7
,
19
(
2015
).
3.
B.
Dunn
,
H.
Kamath
, and
J. M.
Tarascon
,
Science
334
,
928
(
2011
).
4.
J. L.
Lu
,
J. E.
Li
,
J.
Wan
,
X. Y.
Han
,
P. Y.
Ji
,
S.
Luo
,
M. X.
Gu
,
D. P.
Wei
, and
C. G.
Hu
,
Nano Res.
14
,
2410
(
2020
).
5.
S.
Amara
,
J.
Toulc'Hoat
,
L.
Timperman
,
A.
Biller
,
H.
Galiano
,
C.
Marcel
,
M.
Ledigabel
, and
M.
Anouti
,
ChemPhysChem
20
,
581
(
2019
).
6.
S. Y.
Yang
,
B.
Pal
,
S.
Ramesh
,
V.
Thangadurai
, and
R.
Jose
,
Nanoscale Adv.
1
,
3807
(
2019
).
7.
R. Z.
Ma
,
P.
Xiong
,
N.
Sakai
,
X. Y.
Bai
,
S.
Li
, and
T.
Sasaki
,
ACS Appl. Mater. Interfaces
9
,
6282
(
2017
).
8.
M.
Li
,
M.
Huang
,
C. J.
Niu
,
Q.
Li
, and
L. Q.
Mai
,
Adv. Funct. Mater.
29
,
1807847
(
2019
).
9.
C.
Jiang
,
Y.
Fang
,
W.
Zhang
,
X.
Song
,
J.
Lang
,
L.
Shi
, and
Y.
Tang
,
Angew. Chem., Int. Ed.
57
(
50
),
16370
(
2018
).
10.
B. F.
Ji
,
F.
Zhang
,
N. Z.
Wu
, and
Y. B.
Tang
,
Adv. Energy Mater.
7
(
20
),
1700920
(
2017
).
11.
T.
Gao
,
F. D.
Han
,
Y. J.
Zhu
,
L. M.
Suo
,
C.
Luo
,
K.
Xu
, and
C. S.
Wang
,
Adv. Energy Mater.
5
(
5
),
1401507
(
2015
).
12.
Y.
Zhang
,
J. J.
Xie
,
Y. L.
Han
, and
C. L.
Li
,
Adv. Funct. Mater.
25
(
47
),
7300
(
2015
).
13.
D.
Wang
,
L.
Wang
,
G.
Liang
,
H.
Li
,
Z.
Liu
,
Z.
Tang
,
J.
Liang
, and
C. Y.
Zhi
,
ACS Nano
13
(
9
),
10643
10652
(
2019
).
14.
S.
Yusuf
,
V. B. R.
Boppana
,
G. S.
Hutchings
, and
F.
Jiao
,
Adv. Funct. Mater.
23
(
7
),
878
(
2013
).
15.
R.
Yang
,
Y.
Fan
,
R.
Ye
,
Y.
Tang
,
X.
Cao
,
Z.
Yin
, and
Z.
Zeng
,
Adv. Mater.
33
(
9
),
e2004862
(
2021
).
16.
Y. J.
Tang
,
S. S.
Zheng
,
Y. X.
Xu
,
X.
Xiao
,
H. G.
Xue
, and
H.
Pang
,
Energy Storage Mater.
12
,
284
(
2018
).
17.
J.
Shin
,
J. K.
Seo
,
R.
Yaylian
,
A.
Huang
, and
Y. S.
Meng
,
Int. Mater. Rev.
65
(
6
),
356
(
2020
).
18.
F.
Grote
,
R. S.
Kühnel
,
A.
Balducci
, and
Y.
Lei
,
Appl. Phys. Lett.
104
(
5
),
053904
(
2014
).
19.
R.
Ma
,
Y.
Bando
,
L.
Zhang
, and
T.
Sasaki
,
Adv. Mater.
16
(
11
),
918
(
2004
).
20.
H. T.
Zhu
,
J.
Luo
,
H. X.
Yang
,
J. K.
Liang
,
G. H.
Rao
,
J. B.
Li
, and
Z. M.
Du
,
J. Phys. Chem. C
112
,
17089
(
2008
).
21.
S.
Devaraj
and
N.
Munichandraiah
,
J. Phys. Chem. C
112
,
4406
(
2008
).
22.
W. N.
Xu
,
J.
Wan
,
W. C.
Huo
,
Q.
Yang
,
Y. R.
Li
,
C. L.
Zhang
,
X.
Gu
, and
C. G.
Hu
,
Chem. Eng. J.
354
,
1050
(
2018
).
23.
Y. Y.
Zhang
,
Y. X.
Tang
,
J. Y.
Deng
,
W. R.
Leow
,
H. R.
Xia
,
Z. Q.
Zhu
,
Z. S.
Lv
,
J. Q.
Wei
,
W. L.
Li
,
C.
Persson
,
O. I.
Malyi
,
M.
Antonietti
, and
X. D.
Chen
,
ACS Mater. Lett.
1
,
519
(
2019
).
24.
Q.
Shu
,
L.
Chen
,
Y. Y.
Xia
,
X. G.
Gong
, and
X.
Gu
,
J. Phys. Chem. C
117
,
6929
(
2013
).
25.
T. P.
Staatsmaa
and
H. J. C.
Berendsenb
,
J. Chem. Phys.
89
,
5876
(
1988
).
26.
L. R.
Pratt
,
A. E.
Garcia
, and
G.
Hummer
,
J. Phys. Chem.
100
,
1206
(
1996
).

Supplementary Material

You do not currently have access to this content.