Detectors of terahertz radiation based on field-effect transistors (FETs) are among the most promising candidates for low-noise passive signal rectification both in imaging systems and wireless communications. However, it was not realized so far that geometric asymmetry of common FETs with respect to source-drain interchange is a strong objective to photovoltage harvesting. Here, we break the traditional scheme and reveal the optimally asymmetric FET structure, providing the maximization of THz responsivity. We fabricate a series of graphene transistors with variable top gate positions with respect to a mid-channel and compare their subterahertz responsivities in a wide range of carrier densities. We show that responsivity is maximized for input gate electrode shifted toward the source contact. Theoretical simulations show that for large channel resistance, exceeding the gate impedance, such a recipe for responsivity maximization is universal and holds for both resistive self-mixing and photo-thermoelectric detection pathways. In the limiting case of the small channel resistance, the thermoelectric and self-mixing voltages react differently upon changing the asymmetry, which may serve to disentangle the origin of nonlinearities in novel materials.

1.
S. S.
Dhillon
,
M. S.
Vitiello
,
E. H.
Linfield
,
A. G.
Davies
,
M. C.
Hoffmann
,
J.
Booske
,
C.
Paoloni
,
M.
Gensch
,
P.
Weightman
,
G. P.
Williams
,
E.
Castro-Camus
,
D. R. S.
Cumming
,
F.
Simoens
,
I.
Escorcia-Carranza
,
J.
Grant
,
S.
Lucyszyn
,
M.
Kuwata-Gonokami
,
K.
Konishi
,
M.
Koch
,
C. A.
Schmuttenmaer
,
T. L.
Cocker
,
R.
Huber
,
A. G.
Markelz
,
Z. D.
Taylor
,
V. P.
Wallace
,
J. A.
Zeitler
,
J.
Sibik
,
T. M.
Korter
,
B.
Ellison
,
S.
Rea
,
P.
Goldsmith
,
K. B.
Cooper
,
R.
Appleby
,
D.
Pardo
,
P. G.
Huggard
,
V.
Krozer
,
H.
Shams
,
M.
Fice
,
C.
Renaud
,
A.
Seeds
,
A.
Stöhr
,
M.
Naftaly
,
N.
Ridler
,
R.
Clarke
,
J. E.
Cunningham
, and
M. B.
Johnston
, “
The 2017 terahertz science and technology roadmap
,”
J. Phys. D: Appl. Phys.
50
,
043001
(
2017
).
2.
T.
Nagatsuma
,
G.
Ducournau
, and
C. C.
Renaud
, “
Advances in terahertz communications accelerated by photonics
,”
Nat. Photonics
10
,
371
379
(
2016
).
3.
W.
Knap
,
M.
Dyakonov
,
D.
Coquillat
,
F.
Teppe
,
N.
Dyakonova
,
J.
Łusakowski
,
K.
Karpierz
,
M.
Sakowicz
,
G.
Valusis
,
D.
Seliuta
,
I.
Kasalynas
,
A. E.
Fatimy
,
Y. M.
Meziani
, and
T.
Otsuji
, “
Field effect transistors for terahertz detection: Physics and first imaging applications
,”
J. Infrared, Millimeter, Terahertz Waves
30
,
1319
1337
(
2009
).
4.
M.
Bauer
,
S.
Boppel
,
J.
Zhang
,
A.
Rämer
,
S.
Chevtchenko
,
A.
Lisauskas
,
W.
Heinrich
,
V.
Krozer
, and
H. G.
Roskos
, “
Optimization of the design of terahertz detectors based on Si CMOS and AlGaN/GaN field-effect transistors
,”
Int. J. High Speed Electron. Syst.
25
,
1640013
(
2016
).
5.
M.
Bauer
,
A.
Ramer
,
S. A.
Chevtchenko
,
K. Y.
Osipov
,
D.
Cibiraite
,
S.
Pralgauskaite
,
K.
Ikamas
,
A.
Lisauskas
,
W.
Heinrich
,
V.
Krozer
, and
H. G.
Roskos
, “
A high-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna
,”
IEEE Trans. Terahertz Sci. Technol.
9
,
430
444
(
2019
).
6.
M.
Bauer
,
R.
Venckevičius
,
I.
Kašalynas
,
S.
Boppel
,
M.
Mundt
,
L.
Minkevičius
,
A.
Lisauskas
,
G.
Valušis
,
V.
Krozer
,
H. G.
Roskos
,
R.
Venckevi
,
I.
Ka
,
S.
Boppel
,
M.
Mundt
,
A.
Lisauskas
,
G.
Valu
,
V.
Krozer
,
R.
Venckevičius
,
I.
Kašalynas
,
S.
Boppel
,
M.
Mundt
,
L.
Minkevičius
,
A.
Lisauskas
,
G.
Valušis
,
V.
Krozer
, and
H. G.
Roskos
, “
Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz
,”
Opt. Express
22
,
19235
(
2014
).
7.
L.
Liu
,
S. M.
Rahman
,
Z.
Jiang
,
W.
Li
, and
P.
Fay
, “
Advanced terahertz sensing and imaging systems based on integrated III-V interband tunneling devices
,”
Proc. IEEE
105
,
1020
1034
(
2017
).
8.
S.
Rumyantsev
,
X.
Liu
,
V.
Kachorovskii
, and
M.
Shur
, “
Homodyne phase sensitive terahertz spectrometer
,”
Appl. Phys. Lett.
111
,
121105
(
2017
).
9.
D.
Glaab
,
S.
Boppel
,
A.
Lisauskas
,
U.
Pfeiffer
,
E.
Öjefors
, and
H. G.
Roskos
, “
Terahertz heterodyne detection with silicon field-effect transistors
,”
Appl. Phys. Lett.
96
,
042106
(
2010
).
10.
L.
Vicarelli
,
M.
Vitiello
,
D.
Coquillat
,
A.
Lombardo
,
A.
Ferrari
,
W.
Knap
,
M.
Polini
,
V.
Pellegrini
, and
A.
Tredicucci
, “
Graphene field effect transistors as room-temperature terahertz detectors
,”
Nat. Mater.
11
,
865
871
(
2012
).
11.
L.
Viti
,
J.
Hu
,
D.
Coquillat
,
W.
Knap
,
A.
Tredicucci
,
A.
Politano
, and
M. S.
Vitiello
, “
Black phosphorus terahertz photodetectors
,”
Adv. Mater.
27
,
5567
5572
(
2015
).
12.
L.
Viti
,
D.
Coquillat
,
A.
Politano
,
K. A.
Kokh
,
Z. S.
Aliev
,
M. B.
Babanly
,
O. E.
Tereshchenko
,
W.
Knap
,
E. V.
Chulkov
, and
M. S.
Vitiello
, “
Plasma-wave terahertz detection mediated by topological insulators surface states
,”
Nano Lett.
16
,
80
87
(
2016
).
13.
I. A.
Gayduchenko
,
M. V.
Moskotin
,
Y. E.
Matyushkin
,
M. G.
Rybin
,
E. D.
Obraztsova
,
V. I.
Ryzhii
,
G. N.
Goltsman
, and
G. E.
Fedorov
, “
The detection of sub-terahertz radiation using graphene-layer and graphene-nanoribbon FETs with asymmetric contacts
,”
Mater. Today: Proc.
5
,
27301
27306
(
2018
).
14.
L.
Viti
,
A.
Politano
,
K.
Zhang
, and
M. S.
Vitiello
, “
Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes
,”
Nanoscale
11
,
1995
2002
(
2019
).
15.
G.
Auton
,
D. B.
But
,
J.
Zhang
,
E.
Hill
,
D.
Coquillat
,
C.
Consejo
,
P.
Nouvel
,
W.
Knap
,
L.
Varani
, and
F.
Teppe
, “
Terahertz detection and imaging using graphene ballistic rectifiers
,”
Nano Lett.
17
,
7015
7020
(
2017
).
16.
I.
Gayduchenko
,
S. G.
Xu
,
G.
Alymov
,
M.
Moskotin
,
I.
Tretyakov
,
T.
Taniguchi
,
K.
Watanabe
,
G.
Goltsman
,
A. K.
Geim
,
G.
Fedorov
,
D.
Svintsov
, and
D. A.
Bandurin
, “
Tunnel field-effect transistors for sensitive terahertz detection
,”
Nat. Commun.
12
,
543
(
2021
).
17.
W.
Knap
,
J.
Lusakowski
,
T.
Parenty
,
S.
Bollaert
,
A.
Cappy
,
V. V.
Popov
, and
M. S.
Shur
, “
Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors
,”
Appl. Phys. Lett.
84
,
2331
2333
(
2004
).
18.
V. M.
Muravev
and
I. V.
Kukushkin
, “
Plasmonic detector/spectrometer of subterahertz radiation based on two-dimensional electron system with embedded defect
,”
Appl. Phys. Lett.
100
,
082102
(
2012
).
19.
D. A.
Bandurin
,
D.
Svintsov
,
I.
Gayduchenko
,
S. G.
Xu
,
A.
Principi
,
M.
Moskotin
,
I.
Tretyakov
,
D.
Yagodkin
,
S.
Zhukov
,
T.
Taniguchi
,
K.
Watanabe
,
I. V.
Grigorieva
,
M.
Polini
,
G. N.
Goltsman
,
A. K.
Geim
, and
G.
Fedorov
, “
Resonant terahertz detection using graphene plasmons
,”
Nat. Commun.
9
,
5392
(
2018
).
20.
F.
Xia
,
T.
Mueller
,
Y. M.
Lin
,
A.
Valdes-Garcia
, and
P.
Avouris
, “
Ultrafast graphene photodetector
,”
Nat. Nanotechnol.
4
,
839
843
(
2009
).
21.
X.
Gan
,
R. J.
Shiue
,
Y.
Gao
,
I.
Meric
,
T. F.
Heinz
,
K.
Shepard
,
J.
Hone
,
S.
Assefa
, and
D.
Englund
, “
Chip-integrated ultrafast graphene photodetector with high responsivity
,”
Nat. Photonics
7
,
883
887
(
2013
).
22.
S.
Castilla
,
B.
Terrés
,
M.
Autore
,
L.
Viti
,
J.
Li
,
A. Y.
Nikitin
,
I.
Vangelidis
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Lidorikis
,
M. S.
Vitiello
,
R.
Hillenbrand
,
K. J.
Tielrooij
, and
F. H.
Koppens
, “
Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction
,”
Nano Lett.
19
,
2765
2773
(
2019
).
23.
M.
Dyakonov
and
M.
Shur
, “
Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid
,”
IEEE Trans. Electron Devices
43
,
380
387
(
1996
).
24.
W.
Knap
,
F.
Teppe
,
Y.
Meziani
,
N.
Dyakonova
,
J.
Lusakowski
,
F.
Boeuf
,
T.
Skotnicki
,
D.
Maude
,
S.
Rumyantsev
, and
M. S.
Shur
, “
Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors
,”
Appl. Phys. Lett.
85
,
675
677
(
2004
).
25.
D. A.
Bandurin
,
I.
Gayduchenko
,
Y.
Cao
,
M.
Moskotin
,
A.
Principi
,
I. V.
Grigorieva
,
G.
Goltsman
,
G.
Fedorov
, and
D.
Svintsov
, “
Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors
,”
Appl. Phys. Lett.
112
,
141101
(
2018
).
26.
A.
Zak
,
M. A.
Andersson
,
M.
Bauer
,
J.
Matukas
,
A.
Lisauskas
,
H. G.
Roskos
, and
J.
Stake
, “
Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene
,”
Nano Lett.
14
,
5834
5838
(
2014
).
27.
A.
Lisauskas
,
U.
Pfeiffer
,
E.
Öjefors
,
P. H.
Bolìvar
,
D.
Glaab
, and
H. G.
Roskos
, “
Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors
,”
J. Appl. Phys.
105
,
114511
(
2009
).
28.
A. E.
Fatimy
,
N.
Dyakonova
,
Y.
Meziani
,
T.
Otsuji
,
W.
Knap
,
S.
Vandenbrouk
,
K.
Madjour
,
D.
Théron
,
C.
Gaquiere
,
M. A.
Poisson
,
S.
Delage
,
P.
Prystawko
, and
C.
Skierbiszewski
, “
AlGaN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources
,”
J. Appl. Phys.
107
,
024504
(
2010
).
29.
A. S.
Petrov
and
D.
Svintsov
, “
Perturbation theory for two-dimensional hydrodynamic plasmons
,”
Phys. Rev. B
99
,
195437
(
2019
).
30.
J. C. W.
Song
,
M. S.
Rudner
,
C. M.
Marcus
, and
L. S.
Levitov
, “
Hot carrier transport and photocurrent response in graphene
,”
Nano Lett.
11
,
4688
4692
(
2011
).
31.
X.
Cai
,
A. B.
Sushkov
,
R. J.
Suess
,
M. M.
Jadidi
,
G. S.
Jenkins
,
L. O.
Nyakiti
,
R. L.
Myers-Ward
,
S.
Li
,
J.
Yan
,
D. K.
Gaskill
,
T. E.
Murphy
,
H. D.
Drew
, and
M. S.
Fuhrer
, “
Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene
,”
Nat. Nanotechnol.
9
,
814
819
(
2014
).
32.
M.
Sakowicz
,
M. B.
Lifshits
,
O. A.
Klimenko
,
F.
Schuster
,
D.
Coquillat
,
F.
Teppe
, and
W.
Knap
, “
Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects
,”
J. Appl. Phys.
110
,
054512
(
2011
).
33.
M.
Rybin
,
A.
Pereyaslavtsev
,
T.
Vasilieva
,
V.
Myasnikov
,
I.
Sokolov
,
A.
Pavlova
,
E.
Obraztsova
,
A.
Khomich
,
V.
Ralchenko
, and
E.
Obraztsova
, “
Efficient nitrogen doping of graphene by plasma treatment
,”
Carbon
96
,
196
202
(
2016
).
34.
M. G.
Rybin
,
V. R.
Islamova
,
E. A.
Obraztsova
, and
E. D.
Obraztsova
, “
Modification of graphene electronic properties via controllable gas-phase doping with copper chloride
,”
Appl. Phys. Lett.
112
,
033107
(
2018
).
35.
X.
Li
,
Y.
Zhu
,
W.
Cai
,
M.
Borysiak
,
B.
Han
,
D.
Chen
,
R. D.
Piner
,
L.
Colombo
, and
R. S.
Ruoff
, “
Transfer of large-area graphene films for high-performance transparent conductive electrodes
,”
Nano Lett.
9
,
4359
4363
(
2009
).
36.
S.
Adam
,
E. H.
Hwang
,
V. M.
Galitski
, and
S.
Das Sarma
, “
A self-consistent theory for graphene transport
,”
Proc. Natl. Acad. Sci.
104
,
18392
18397
(
2007
).
37.
A.
Sanchez
,
C. F.
Davis
,
K. C.
Liu
, and
A.
Javan
, “
The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies
,”
J. Appl. Phys.
49
,
5270
5277
(
1978
).
38.
T.
Low
,
V.
Perebeinos
,
R.
Kim
,
M.
Freitag
, and
P.
Avouris
, “
Cooling of photoexcited carriers in graphene by internal and substrate phonons
,”
Phys. Rev. B
86
,
045413
(
2012
).
39.
A.
Principi
,
D.
Bandurin
,
H.
Rostami
, and
M.
Polini
, “
Pseudo-Euler equations from nonlinear optics: Plasmon-assisted photodetection beyond hydrodynamics
,”
Phys. Rev. B
99
,
075410
(
2019
).
40.
V.
Ryzhii
, “
Terahertz plasma waves in gated graphene heterostructures
,”
Jpn. J. Appl. Phys., Part 2
45
,
L923
(
2006
).
41.
T. J.
Echtermeyer
,
L.
Britnell
,
P. K.
Jasnos
,
A.
Lombardo
,
R. V.
Gorbachev
,
A. N.
Grigorenko
,
A. K.
Geim
,
A. C.
Ferrari
, and
K. S.
Novoselov
, “
Strong plasmonic enhancement of photovoltage in graphene
,”
Nat. Commun.
2
,
455
458
(
2011
).

Supplementary Material

You do not currently have access to this content.