Ongoing active development of modern radio frequency electronic devices operating in the millimeter (V) band, such as fifth-generation wireless communications, demands new materials to control electromagnetic interference, compatibility, and reliability of such systems. This work investigates feasibility absorptive non-reflective thin coatings deposition on dielectric substrates using simultaneous magnetron co-deposition. For this, electromagnetic waves propagation in the millimeter band through in micrometer-thick Al–Si films of varied composition was studied. The co-deposition process was controlled by the ratio of sputtered atoms fluxes. Graded segregation was observed under certain parameters of the co-deposition process, resulting in a depth gradient of an aluminum content, as confirmed by the secondary ion mass spectrometry study. A qualitative model was proposed involving aluminum-induced silicon recrystallization happening in the course of a known aluminum interlayer exchange process. The observed Al–Si segregation effect in micrometer-thick films allows for preparation of the non-reflective and absorptive material for operation in the V-band with reflection losses more than 10 dB and transmission losses around 5 dB in the bandwidth of up to 20 GHz.

1.
S.
Cherry
,
IEEE Spectr.
41
,
58
(
2004
).
2.
M.
Shafi
,
A. F.
Molisch
,
P. J.
Smith
,
T.
Haustein
,
P.
Zhu
,
P.
De Silva
,
F.
Tufvesson
,
A.
Benjebbour
, and
G.
Wunder
,
IEEE J. Sel. Areas Commun.
35
,
1201
(
2017
).
3.
I. F.
Akyildiz
,
A.
Kak
, and
S.
Nie
,
IEEE Access
8
,
133995
(
2020
).
4.
T. S.
Rappaport
,
Y.
Xing
,
O.
Kanhere
,
S.
Ju
,
A.
Madanayake
,
S.
Mandal
,
A.
Alkhateeb
, and
G. C.
Trichopoulos
,
IEEE Access
7
,
78729
(
2019
).
5.
T. S.
Rappaport
,
Y.
Xing
,
G. R.
MacCartney
,
A. F.
Molisch
,
E.
Mellios
, and
J.
Zhang
,
IEEE Trans. Antennas Propag.
65
,
6213
(
2017
).
6.
X.
Shen
,
Y.
Liu
,
L.
Zhao
,
G. L.
Huang
,
X.
Shi
, and
Q.
Huang
,
IEEE Antennas Wirel. Propag. Lett.
18
,
1671
(
2019
).
7.
R.
Panwar
and
J. R.
Lee
,
Funct. Compos. Struct.
1
,
032001
(
2019
).
8.
M.
Green
and
X.
Chen
,
J. Mater.
5
,
503
(
2019
).
9.
H.
Bosman
,
Y. Y.
Lau
, and
R. M.
Gilgenbach
,
Appl. Phys. Lett.
82
,
1353
(
2003
).
10.
L.
Huang
,
C.
Chen
,
Z.
Li
,
Y.
Zhang
,
H.
Zhang
,
J.
Lu
,
S.
Ruan
, and
Y.
Zeng
,
Nanotechnology
31
,
162001
(
2020
).
11.
J.
Jung
,
H.
Park
,
J.
Park
,
T.
Chang
, and
J.
Shin
,
Nanophotonics
9
,
3165
(
2020
).
12.
A.
Li
,
S.
Singh
, and
D.
Sievenpiper
,
Nanophotonics
7
,
989
(
2018
).
13.
V. L.
Soethe
,
E. L.
Nohara
,
L. C.
Fontana
, and
M. C.
Rezende
,
J. Aerosp. Technol. Manag.
3
,
279
(
2011
).
14.
R. V.
Ramanujan
and
C. K.
Ong
,
J. Appl. Phys.
107
,
09A505
(
2010
).
15.
J.
Li
,
W.
Lu
,
J.
Suhr
,
H.
Chen
,
J. Q.
Xiao
, and
T.-W.
Chou
,
Sci. Rep.
7
,
2349
(
2017
).
16.
K.
Batrakov
,
P.
Kuzhir
,
S.
Maksimenko
,
A.
Paddubskaya
,
S.
Voronovich
,
T.
Kaplas
, and
Y.
Svirko
,
Appl. Phys. Lett.
103
,
073117
(
2013
).
17.
T.
Yamada
,
T.
Nishio
,
M.
Morikura
, and
K.
Yamamoto
, in
Proceedings of 21st Asia–Pacific Conference Communication (APCC 2015)
(
IEEE
,
Kyoto
,
2016
), p.
278
.
18.
W.
Kern
,
J. Electrochem. Soc.
137
,
1887
(
1990
).
19.
A.
Serdobintsev
,
V.
Galushka
,
A.
Pavlov
,
A.
Starodubov
,
I.
Kozhevnikov
, and
N.
Ryskin
, in Proceedings of
7th International Congress on Energy Fluxes Radiation and Efficiency
(
IEEE
,
Tomsk
,
2020
), pp.
533
537
.
20.
S.
Tay
,
A.
Kropachev
,
I. E.
Araci
,
T.
Skotheim
,
R. A.
Norwood
, and
N.
Peyghambarian
,
Appl. Phys. Lett.
94
,
071113
(
2009
).
21.
D. L.
Rode
,
V. R.
Gaddam
, and
J. H.
Yi
,
J. Appl. Phys.
102
,
024303
(
2007
).
22.
A.
Thøgersen
,
I. J. T.
Jensen
,
M.
Stange
,
A.
Røyset
,
O. M.
Løvvik
,
A. G.
Ulyashin
, and
S.
Diplas
,
J. Phys. Condens. Matter
30
,
335502
(
2018
).
23.
A.
Thøgersen
,
M.
Stange
,
I. J. T.
Jensen
,
A.
Røyset
,
A.
Ulyashin
, and
S.
Diplas
,
APL Mater.
4
,
036103
(
2016
).
24.
O.
Nast
and
S. R.
Wenham
,
J. Appl. Phys.
88
,
124
(
2000
).
25.
S.
Gall
,
Adv. Mat. Res.
14
,
193
218
(
2009
).
26.
A. O.
Zamchiy
,
E. A.
Baranov
,
E. A.
Maximovskiy
,
V. A.
Volodin
,
V. I.
Vdovin
,
A. K.
Gutakovskii
, and
I. V.
Korolkov
,
Mater. Lett.
261
,
127086
(
2020
).
27.
J.
Beker-Jarvis
,
M. D.
Janezic
,
B. F.
Riddle
,
R. T.
Johhnk
,
P.
Kabos
,
C. L.
Holloway
,
R. G.
Geyer
, and
C. A.
Grosvenor
,
NIST Tech. Note
1536
,
1
(
2005
).
28.
J.
Baker-Jarvis
,
E. J.
Vanzura
, and
W. A.
Kissick
,
IEEE Trans. Microwave Theory Tech.
38
,
1096
(
1990
).
29.
D. K.
Ghodgaonkar
,
V. V.
Varadan
, and
V. K.
Varadan
,
IEEE Trans. Instrum. Meas.
39
,
387
(
1990
).
30.
A. A.
Serdobintsev
,
A. V.
Starodubov
,
I. O.
Kozhevnikov
,
V. V.
Galushka
,
A. M.
Pavlov
, and
N. M.
Ryskin
,
J. Phys. Conf. Ser.
1697
,
012054
(
2020
).
31.
A. V.
Starodubov
,
S. A.
Makarkin
,
A. A.
Serdobintsev
,
A. M.
Pavlov
,
V. V.
Galushka
, and
I. O.
Kozhevnikov
,
Prog. Electromagn. Res. C
105
,
23
(
2020
).
32.
M.
Steer
,
Fundamentals of Microwave and RF Design
(
NC State University
,
2019
).
33.
Y.
Li
,
X.
Liu
,
R.
Liu
,
X.
Pang
,
Y.
Zhang
,
G.
Qin
, and
X.
Zhang
,
Carbon N. Y.
139
,
181
(
2018
).
34.
I. R.
Ibrahim
,
K. A.
Matori
,
I.
Ismail
,
Z.
Awang
,
S. N. A.
Rusly
,
R.
Nazlan
,
F.
Mohd Idris
,
M. M.
Muhammad Zulkimi
,
N. H.
Abdullah
,
M. S.
Mustaffa
,
F. N.
Shafiee
, and
M.
Ertugrul
,
Sci. Rep.
10
,
3135
(
2020
).
35.
X.
Zeng
,
X.
Cheng
,
R.
Yu
, and
G. D.
Stucky
,
Carbon N. Y.
168
,
606
(
2020
).
36.
T.
Matsui
,
S.
Taniguchi
,
K.
Yoshida
, and
H.
Murata
,
OSA Contin.
4
,
2351
(
2021
).
37.
T.
Liu
and
S.-S.
Kim
,
Sci. Rep.
9
,
16494
(
2019
).
38.
J.
Sun
,
L.
Liu
,
G.
Dong
, and
J.
Zhou
,
Opt. Express
19
,
21155
(
2011
).
You do not currently have access to this content.