Mode hybridization is a unique way to manipulate the mode inside a fixed cavity or at interface. For example, Tamm plasmon-polariton at solid interface can be spectrally shifted without tuning the interface. Experimental implementation of tunable hybrid Tamm-microcavity modes is reported. The hybrid modes are excited in a one-dimensional photonic crystal bounded with a gold layer by attaching a nematic liquid crystal microcavity. Coupling between Tamm plasmon-polariton and microcavity modes leads to repulsion of their dispersion curves controlled by the refractive index of a liquid crystal and the polarization of incident light. Effective tuning of hybrid modes through heating or applying an external electric field to the liquid crystal layer is demonstrated. The experimentally measured strength coupling value between Tamm and microcavity modes was 20.7 meV.

1.
M.
Kaliteevski
,
I.
Iorsh
,
S.
Brand
,
R. A.
Abram
,
J. M.
Chamberlain
,
A. V.
Kavokin
, and
I. A.
Shelykh
, “
Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror
,”
Phys. Rev. B
76
,
165415
(
2007
).
2.
A. P.
Vinogradov
,
A. V.
Dorofeenko
,
S. G.
Erokhin
,
M.
Inoue
,
A. A.
Lisyansky
,
A. M.
Merzlikin
, and
A. B.
Granovsky
, “
Surface state peculiarities in one-dimensional photonic crystal interfaces
,”
Phys. Rev. B
74
,
045128
(
2006
).
3.
M. E.
Sasin
,
R. P.
Seisyan
,
M. A.
Kalitteevski
,
S.
Brand
,
R. A.
Abram
,
J. M.
Chamberlain
,
A. Y.
Egorov
,
A. P.
Vasil'ev
,
V. S.
Mikhrin
, and
A. V.
Kavokin
, “
Tamm plasmon polaritons: Slow and spatially compact light
,”
Appl. Phys. Lett.
92
,
251112
(
2008
).
4.
Q.
Wang
,
M.
Xiao
,
H.
Liu
,
S.
Zhu
, and
C. T.
Chan
, “
Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal
,”
Phys. Rev. B
93
,
041415
(
2016
).
5.
Q.
Wang
,
M.
Xiao
,
H.
Liu
,
S.
Zhu
, and
C. T.
Chan
, “
Optical interface states protected by synthetic weyl points
,”
Phys. Rev. X
7
,
031032
(
2017
).
6.
Y.
Tsurimaki
,
J. K.
Tong
,
V. N.
Boriskin
,
A.
Semenov
,
M. I.
Ayzatsky
,
Y. P.
Machekhin
,
G.
Chen
, and
S. V.
Boriskina
, “
Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection
,”
ACS Photonics
5
,
929
938
(
2018
).
7.
H.
Lu
,
Y.
Li
,
Z.
Yue
,
D.
Mao
, and
J.
Zhao
, “
Topological insulator based Tamm plasmon polaritons
,”
APL Photonics
4
,
040801
(
2019
).
8.
C.
Schmidt
,
A.
Palatnik
,
M.
Sudzius
,
S.
Meister
, and
K.
Leo
, “
Coupled topological interface states
,”
Phys. Rev. B
103
,
085412
(
2021
).
9.
X.-L.
Zhang
,
J.-F.
Song
,
X.-B.
Li
,
J.
Feng
, and
H.-B.
Sun
, “
Optical Tamm states enhanced broad-band absorption of organic solar cells
,”
Appl. Phys. Lett.
101
,
243901
(
2012
).
10.
A. M.
Vyunishev
,
R. G.
Bikbaev
,
S. E.
Svyakhovskiy
,
I. V.
Timofeev
,
P. S.
Pankin
,
S. A.
Evlashin
,
S. Y.
Vetrov
,
S. A.
Myslivets
, and
V. G.
Arkhipkin
, “
Broadband Tamm plasmon polariton
,”
J. Opt. Soc. Am. B
36
,
2299
(
2019
).
11.
R. G.
Bikbaev
,
S. Y.
Vetrov
,
I. V.
Timofeev
, and
V. F.
Shabanov
, “
Photosensitivity and reflectivity of the active layer in a Tamm-plasmon-polariton-based organic solar cell
,”
Appl. Opt.
60
,
3338
(
2021
).
12.
C.
Symonds
,
A.
Lemaître
,
P.
Senellart
,
M. H.
Jomaa
,
S.
Aberra Guebrou
,
E.
Homeyer
,
G.
Brucoli
, and
J.
Bellessa
, “
Lasing in a hybrid GaAs/silver Tamm structure
,”
Appl. Phys. Lett.
100
,
121122
(
2012
).
13.
A. R.
Gubaydullin
,
C.
Symonds
,
J.
Bellessa
,
K. A.
Ivanov
,
E. D.
Kolykhalova
,
M. E.
Sasin
,
A.
Lemaître
,
P.
Senellart
,
G.
Pozina
, and
M. A.
Kaliteevski
, “
Enhancement of spontaneous emission in Tamm plasmon structures
,”
Sci. Rep.
7
,
9014
(
2017
).
14.
S.
Meister
,
R.
Brückner
,
M.
Sudzius
,
H.
Fröb
, and
K.
Leo
, “
Optically pumped lasing of an electrically active hybrid OLED-microcavity
,”
Appl. Phys. Lett.
112
,
113301
(
2018
).
15.
O.
Gazzano
,
S.
Michaelis de Vasconcellos
,
K.
Gauthron
,
C.
Symonds
,
P.
Voisin
,
J.
Bellessa
,
A.
Lemaître
, and
P.
Senellart
, “
Single photon source using confined Tamm plasmon modes
,”
Appl. Phys. Lett.
100
,
232111
(
2012
).
16.
B. I.
Afinogenov
,
A. A.
Popkova
,
V. O.
Bessonov
, and
A. A.
Fedyanin
, “
Measurements of the femtosecond relaxation dynamics of Tamm plasmon-polaritons
,”
Appl. Phys. Lett.
109
,
171107
(
2016
).
17.
S.
Kumar
and
R.
Das
, “
Refractive index sensing using a light trapping cavity: A theoretical study
,”
J. Appl. Phys.
123
,
233103
(
2018
).
18.
B. I.
Afinogenov
,
V. O.
Bessonov
,
I. V.
Soboleva
, and
A. A.
Fedyanin
, “
Ultrafast all-optical light control with Tamm plasmons in photonic nanostructures
,”
ACS Photonics
6
,
844
850
(
2019
).
19.
E.
Harbord
,
B.
Cemlyn
,
M.
Parker
,
E.
Clarke
,
K.
Kennedy
,
I.
Henning
,
M.
Adams
, and
R.
Oulton
, “
Confined Tamm optical states coupled to quantum dots in a photoconductive detector
,”
Appl. Phys. Lett.
115
,
171101
(
2019
).
20.
Z.-Y.
Yang
,
S.
Ishii
,
T.
Yokoyama
,
T. D.
Dao
,
M.-G.
Sun
,
P. S.
Pankin
,
I. V.
Timofeev
,
T.
Nagao
, and
K.-P.
Chen
, “
Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons
,”
ACS Photonics
4
,
2212
2219
(
2017
).
21.
Z.
Wang
,
J. K.
Clark
,
Y.-L.
Ho
,
B.
Vilquin
,
H.
Daiguji
, and
J.-J.
Delaunay
, “
Narrowband thermal emission from Tamm plasmons of a modified distributed Bragg reflector
,”
Appl. Phys. Lett.
113
,
161104
(
2018
).
22.
Z.
Yang
,
S.
Ishii
,
A. T.
Doan
,
S. L.
Shinde
,
T. D.
Dao
,
Y.
Lo
,
K.
Chen
, and
T.
Nagao
, “
Narrow-band thermal emitter with titanium nitride thin film demonstrating high temperature stability
,”
Adv. Opt. Mater.
8
,
1900982
(
2020
).
23.
E. I.
Girshova
,
A. P.
Mikitchuk
,
A. V.
Belonovski
,
K. M.
Morozov
,
K. A.
Ivanov
,
G.
Pozina
,
K. V.
Kozadaev
,
A. Y.
Egorov
, and
M. A.
Kaliteevski
, “
Proposal for a photoacoustic ultrasonic generator based on Tamm plasmon structures
,”
Opt. Express
28
,
26161
(
2020
).
24.
B. I.
Afinogenov
,
V. O.
Bessonov
, and
A. A.
Fedyanin
, “
Second-harmonic generation enhancement in the presence of Tamm plasmon-polaritons
,”
Opt. Lett.
39
,
6895
(
2014
).
25.
B. I.
Afinogenov
,
A. A.
Popkova
,
V. O.
Bessonov
,
B.
Lukyanchuk
, and
A. A.
Fedyanin
, “
Phase matching with Tamm plasmons for enhanced second- and third-harmonic generation
,”
Phys. Rev. B
97
,
115438
(
2018
).
26.
C.
Symonds
,
A.
Lemaître
,
E.
Homeyer
,
J. C.
Plenet
, and
J.
Bellessa
, “
Emission of Tamm plasmon/exciton polaritons
,”
Appl. Phys. Lett.
95
,
151114
(
2009
).
27.
S. S.-U.
Rahman
,
T.
Klein
,
S.
Klembt
,
J.
Gutowski
,
D.
Hommel
, and
K.
Sebald
, “
Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons
,”
Sci. Rep.
6
,
34392
(
2016
).
28.
T.
Hu
,
Y.
Wang
,
L.
Wu
,
L.
Zhang
,
Y.
Shan
,
J.
Lu
,
J.
Wang
,
S.
Luo
,
Z.
Zhang
,
L.
Liao
,
S.
Wu
,
X.
Shen
, and
Z.
Chen
, “
Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons
,”
Appl. Phys. Lett.
110
,
051101
(
2017
).
29.
Z.
Wang
,
R.
Gogna
, and
H.
Deng
, “
What is the best planar cavity for maximizing coherent exciton-photon coupling
,”
Appl. Phys. Lett.
111
,
061102
(
2017
).
30.
K. M.
Morozov
,
P.
Pander
,
L. G.
Franca
,
A. V.
Belonovski
,
E. I.
Girshova
,
K. A.
Ivanov
,
D. A.
Livshits
,
N. V.
Selenin
,
G.
Pozina
,
A. P.
Monkman
, and
M. A.
Kaliteevski
, “
Opposite sign of polarization splitting in ultrastrongly coupled organic Tamm plasmon structures
,”
J. Phys. Chem. C
125
,
8376
8381
(
2021
).
31.
A. V.
Baryshev
,
K.
Kawasaki
,
P. B.
Lim
, and
M.
Inoue
, “
Interplay of surface resonances in one-dimensional plasmonic magnetophotonic crystal slabs
,”
Phys. Rev. B
85
,
205130
(
2012
).
32.
B. I.
Afinogenov
,
V. O.
Bessonov
,
A. A.
Nikulin
, and
A. A.
Fedyanin
, “
Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals
,”
Appl. Phys. Lett.
103
,
061112
(
2013
).
33.
M.
Kaliteevski
,
S.
Brand
,
R. A.
Abram
,
I.
Iorsh
,
A. V.
Kavokin
, and
I. A.
Shelykh
, “
Hybrid states of Tamm plasmons and exciton polaritons
,”
Appl. Phys. Lett.
95
,
251108
(
2009
).
34.
R.
Brückner
,
M.
Sudzius
,
S. I.
Hintschich
,
H.
Fröb
,
V. G.
Lyssenko
, and
K.
Leo
, “
Hybrid optical Tamm states in a planar dielectric microcavity
,”
Phys. Rev. B
83
,
033405
(
2011
).
35.
R.
Brückner
,
M.
Sudzius
,
S. I.
Hintschich
,
H.
Fröb
,
V. G.
Lyssenko
,
M. A.
Kaliteevski
,
I.
Iorsh
,
R. A.
Abram
,
A. V.
Kavokin
, and
K.
Leo
, “
Parabolic polarization splitting of Tamm states in a metal-organic microcavity
,”
Appl. Phys. Lett.
100
,
062101
(
2012
).
36.
X.-L.
Zhang
,
J.-F.
Song
,
J.
Feng
, and
H.-B.
Sun
, “
Spectral engineering by flexible tunings of optical Tamm states and Fabry–Perot cavity resonance
,”
Opt. Lett.
38
,
4382
(
2013
).
37.
X.-L.
Zhang
,
J.-F.
Song
,
X.-B.
Li
,
J.
Feng
, and
H.-B.
Sun
, “
Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry–Pérot cavity modes
,”
Organic Electron.
14
,
1577
1585
(
2013
).
38.
X.-L.
Zhang
,
J.
Feng
,
X.-C.
Han
,
Y.-F.
Liu
,
Q.-D.
Chen
,
J.-F.
Song
, and
H.-B.
Sun
, “
Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices
,”
Optica
2
,
579
(
2015
).
39.
Y.-t.
Fang
,
L.-x.
Yang
,
W.
Kong
, and
N.
Zhu
, “
Tunable coupled states of a pair of Tamm plasmon polaritons and a microcavity mode
,”
J. Opt.
15
,
125703
(
2013
).
40.
M. A.
Kaliteevski
,
A. A.
Lazarenko
,
N. D.
Il'inskaya
,
Y. M.
Zadiranov
,
M. E.
Sasin
,
D.
Zaitsev
,
V. A.
Mazlin
,
P. N.
Brunkov
,
S. I.
Pavlov
, and
A. Y.
Egorov
, “
Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity
,”
Plasmonics
10
,
281
284
(
2015
).
41.
R.
Li
,
C.
Zhang
, and
X.
Li
, “
Schottky hot-electron photodetector by cavity-enhanced optical Tamm resonance
,”
Appl. Phys. Lett.
110
,
013902
(
2017
).
42.
C. Y.
Chang
,
Y. H.
Chen
,
Y. L.
Tsai
,
H. C.
Kuo
, and
K. P.
Chen
, “
Tunability and optimization of coupling efficiency in Tamm plasmon modes
,”
IEEE J. Sel. Top. Quantum Electron.
21
,
262
267
(
2015
).
43.
C.
Grossmann
,
G.
Christmann
,
J. J.
Baumberg
,
I.
Farrer
,
H.
Beere
, and
D. A.
Ritchie
, “
Strong coupling at room temperature in ultracompact flexible metallic microcavities
,”
Appl. Phys. Lett.
102
,
011118
(
2013
).
44.
L.
Li
,
H.
Zhao
, and
J.
Zhang
, “
Electrically tuning reflection of graphene-based Tamm plasmon polariton structures at 1550 nm
,”
Appl. Phys. Lett.
111
,
083504
(
2017
).
45.
C.
Grossmann
,
C.
Coulson
,
G.
Christmann
,
I.
Farrer
,
H. E.
Beere
,
D. A.
Ritchie
, and
J. J.
Baumberg
, “
Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities
,”
Appl. Phys. Lett.
98
,
231105
(
2011
).
46.
J.
Gessler
,
V.
Baumann
,
M.
Emmerling
,
M.
Amthor
,
K.
Winkler
,
S.
Höfling
,
C.
Schneider
, and
M.
Kamp
, “
Electro optical tuning of Tamm-plasmon exciton-polaritons
,”
Appl. Phys. Lett.
105
,
181107
(
2014
).
47.
H.-C.
Cheng
,
C.-Y.
Kuo
,
Y.-J.
Hung
,
K.-P.
Chen
, and
S.-C.
Jeng
, “
Liquid-crystal active tamm-plasmon devices
,”
Phys. Rev. Appl.
9
,
64034
(
2018
).
48.
K.
Sebald
,
S. S.
Rahman
,
M.
Cornelius
,
J.
Gutowski
,
T.
Klein
,
S.
Klembt
,
C.
Kruse
, and
D.
Hommel
, “
Tailoring the optical properties of wide-bandgap based microcavities via metal films
,”
Appl. Phys. Lett.
107
,
062101
(
2015
).
49.
P. S.
Pankin
,
S. Y.
Vetrov
, and
I. V.
Timofeev
, “
Tunable hybrid Tamm-microcavity states
,”
J. Opt. Soc. Am. B
34
,
2633
2639
(
2017
).
50.
L. M.
Blinov
,
Structure and Properties of Liquid Crystals, Topics in Applied Physics
(
Springer
,
2010
), p.
458
.
51.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
(
Cambridge University Press
,
1999
).
52.
S. Y.
Vetrov
and
A. V.
Shabanov
, “
Localized electromagnetic modes and the transmission spectrum of a one-dimensional photonic crystal with lattice defects
,”
J. Exp. Theor. Phys.
93
,
977
984
(
2001
).
53.
V. G.
Arkhipkin
,
V. A.
Gunyakov
,
S. A.
Myslivets
,
V. Y.
Zyryanov
,
V. F.
Shabanov
, and
W.
Lee
, “
Electro- and magneto-optical switching of defect modes in one-dimensional photonic crystals
,”
J. Exp. Theor. Phys.
112
,
577
587
(
2011
).
54.
D. W.
Berreman
, “
Optics in stratified and anisotropic media: 4 × 4-matrix formulation
,”
J. Opt. Soc. Am.
62
,
502
510
(
1972
).
55.
R. M. A.
Azzam
and
N. M.
Bashara
,
Ellipsometry and Polarized Light
(
North-Holland Pub. Co
.,
1977
).
56.
H. J.
Deuling
, “
Deformation of nematic liquid crystals in an electric field
,”
Mol. Cryst. Liq. Cryst.
19
,
123
131
(
1972
).
57.
V. G.
Arkhipkin
,
V. A.
Gunyakov
,
S. A.
Myslivets
,
V. P.
Gerasimov
,
V. Y.
Zyryanov
,
S. Y.
Vetrov
, and
V. F.
Shabanov
, “
One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes
,”
J. Exp. Theor. Phys.
106
,
388
398
(
2008
).
58.
H. A.
Haus
,
Waves and Fields in Optoelectronics
, Prentice-Hall Series in Solid State Physical Electronics (
Prentice Hall, Incorporated
,
Upper Saddle River, NJ
,
1983
), p.
402
.
59.
P. S.
Pankin
,
B.-R.
Wu
,
J.-H.
Yang
,
K.-P.
Chen
,
I. V.
Timofeev
, and
A. F.
Sadreev
, “
One-dimensional photonic bound states in the continuum
,”
Commun. Phys.
3
,
91
(
2020
).
60.
P.
Das
,
S.
Mukherjee
,
S.
Jana
,
S. K.
Ray
, and
B. N.
Shivakiran Bhaktha
, “
Resonant and non-resonant coupling of one-dimensional microcavity mode and optical Tamm state
,”
J. Opt.
22
,
065002
(
2020
).

Supplementary Material

You do not currently have access to this content.