Three-dimensional (3D) fluorescence imaging is an essential technique in the biomedical field. In particular, 3D fluorescence imaging through dynamic scattering media is a crucial task for the minimally invasive observation of labeled cells. In this study, this task was accomplished via motionless optical scanning holography, proposed as a single-pixel 3D imaging technique. The proposed method does not require additional computational processing or optical components when the detected intensities do not considerably fluctuate irrespective of the presence of dynamic scattering media. The results of a proof-of-principle experiment indicated that the proposed method can help in computationally refocusing fluorescent objects that are placed at different positions behind dynamic scattering media.

1.
Q.
Ma
,
B.
Khademhosseinieh
,
E.
Huang
,
H.
Qian
,
M. A.
Bakowski
,
E. R.
Troemel
, and
Z.
Liu
, “
Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes
,”
Sci. Rep.
6
,
31445
(
2016
).
2.
Z.
Wang
,
Y.
Cai
,
Y.
Liang
,
X.
Zhou
,
S.
Yan
,
D.
Dan
,
P. R.
Bianco
,
M.
Lei
, and
B.
Yao
, “
Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function
,”
Biomed. Opt. Express
8
,
5493
5506
(
2017
).
3.
X.
Quan
,
M.
Kumar
,
O.
Matoba
,
Y.
Awatsuji
,
Y.
Hayasaki
,
S.
Hasegawa
, and
H.
Wake
, “
Three-dimensional stimulation and imaging-based functional optical microscopy of biological cells
,”
Opt. Lett.
43
,
5447
5450
(
2018
).
4.
S. M.
Popoff
,
G.
Lerosey
,
R.
Carminati
,
M.
Fink
,
A. C.
Boccara
, and
S.
Gigan
, “
Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media
,”
Phys. Rev. Lett.
104
,
100601
(
2010
).
5.
M.
Kim
,
W.
Choi
,
Y.
Choi
,
C.
Yoon
, and
W.
Choi
, “
Transmission matrix of a scattering medium and its applications in biophotonics
,”
Opt. Express
23
,
12648
12668
(
2015
).
6.
H.
Kogelnik
and
K. S.
Pennington
, “
Holographic imaging through a random medium
,”
J. Opt. Soc. Am.
58
,
273
(
1968
).
7.
E.
Leith
,
C.
Chen
,
H.
Chen
,
Y.
Chen
,
D.
Dilworth
,
J.
Lopez
,
J.
Rudd
,
P.-C.
Sun
,
J.
Valdmanis
, and
G.
Vossler
, “
Imaging through scattering media with holography
,”
J. Opt. Soc. Am. A
9
,
1148
1153
(
1992
).
8.
K.
Oe
and
T.
Nomura
, “
Twin-image reduction method using a diffuser for phase imaging in-line digital holography
,”
Appl. Opt.
57
,
5652
5656
(
2018
).
9.
S.
Tabata
,
H.
Arimoto
, and
W.
Watanabe
, “
Looking through diffusers by phasecorrection with lensless digital holography
,”
OSA Continuum
3
,
3536
3543
(
2020
).
10.
J. W.
Goodman
,
W. H.
Huntley
,
D. W.
Jackson
, and
M.
Lehmann
, “
Wavefront-reconstruction imaging through random media
,”
Appl. Phys. Lett.
8
,
311
313
(
1966
).
11.
A. K.
Singh
,
D. N.
Naik
,
G.
Pedrini
,
M.
Takeda
, and
W.
Osten
, “
Looking through a diffuser and around an opaque surface: A holographic approach
,”
Opt. Express
22
,
7694
(
2014
).
12.
S.
Kodama
,
M.
Ohta
,
K.
Ikeda
,
Y.
Kano
,
Y.
Miyamoto
,
W.
Osten
,
M.
Takeda
, and
E.
Watanabe
, “
Three-dimensional microscopic imaging through scattering media based on in-line phase-shift digital holography
,”
Appl. Opt.
58
,
G345
G350
(
2019
).
13.
J.
Bertolotti
,
E. G.
van Putten
,
C.
Blum
,
A.
Lagendijk
,
W. L.
Vos
, and
A. P.
Mosk
, “
Non-invasive imaging through opaque scattering layers
,”
Nature
491
,
232
234
(
2012
).
14.
M.
Liao
,
D.
Lu
,
W.
He
,
G.
Pedrini
,
W.
Osten
, and
X.
Peng
, “
Improving reconstruction of speckle correlation imaging by using a modified phase retrieval algorithm with the number of nonzero-pixels constraint
,”
Appl. Opt.
58
,
473
(
2019
).
15.
Y.
Okamoto
,
R.
Horisaki
, and
J.
Tanida
, “
Noninvasive three-dimensional imaging through scattering media by three-dimensional speckle correlation
,”
Opt. Lett.
44
,
2526
2529
(
2019
).
16.
R.
Horisaki
,
R.
Takagi
, and
J.
Tanida
, “
Learning-based imaging through scattering media
,”
Opt. Express
24
,
13738
13743
(
2016
).
17.
S.
Li
,
M.
Deng
,
J.
Lee
,
A.
Sinha
, and
G.
Barbastathis
, “
Imaging through glass diffusers using densely connected convolutional networks
,”
Optica
5
,
803
813
(
2018
).
18.
Y.
Li
,
Y.
Xue
, and
L.
Tian
, “
Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media
,”
Optica
5
,
1181
1190
(
2018
).
19.
J. H.
Shapiro
, “
Computational ghost imaging
,”
Phys. Rev. A
78
,
061802
(
2008
).
20.
M. F.
Duarte
,
M. A.
Davenport
,
D.
Takhar
,
J. N.
Laska
,
T.
Sun
,
K. F.
Kelly
, and
R. G.
Baraniuk
, “
Single-pixel imaging via compressive sampling
,”
IEEE Signal Process. Mag.
25
,
83
91
(
2008
).
21.
Z.
Zhang
,
X.
Ma
, and
J.
Zhong
, “
Single-pixel imaging by means of Fourier spectrum acquisition
,”
Nat. Commun.
6
,
6225
(
2015
).
22.
E.
Tajahuerce
,
V.
Durán
,
P.
Clemente
,
E.
Irles
,
F.
Soldevila
,
P.
Andrés
, and
J.
Lancis
, “
Image transmission through dynamic scattering media by single-pixel photodetection
,”
Opt. Express
22
,
16945
16955
(
2014
).
23.
V.
Durán
,
F.
Soldevila
,
E.
Irles
,
P.
Clemente
,
E.
Tajahuerce
,
P.
Andrés
, and
J.
Lancis
, “
Compressive imaging in scattering media
,”
Opt. Express
23
,
14424
14433
(
2015
).
24.
L.
Martínez-León
,
P.
Clemente
,
Y.
Mori
,
V.
Climent
,
J.
Lancis
, and
E.
Tajahuerce
, “
Single-pixel digital holography with phase-encoded illumination
,”
Opt. Express
25
,
4975
4984
(
2017
).
25.
R.
Dutta
,
S.
Manzanera
,
A.
Gambín-Regadera
,
E.
Irles
,
E.
Tajahuerce
,
J.
Lancis
, and
P.
Artal
, “
Single-pixel imaging of the retina through scattering media
,”
Biomed. Opt. Express
10
,
4159
4167
(
2019
).
26.
K.
Soltanlou
and
H.
Latifi
, “
Three-dimensional imaging through scattering media using a single pixel detector
,”
Appl. Opt.
58
,
7716
7726
(
2019
).
27.
A. M.
Paniagua-Diaz
,
I.
Starshynov
,
N.
Fayard
,
A.
Goetschy
,
R.
Pierrat
,
R.
Carminati
, and
J.
Bertolotti
, “
Blind ghost imaging
,”
Optica
6
,
460
464
(
2019
).
28.
T. C.
Poon
and
A.
Korpel
, “
Optical transfer function of an acousto-optic heterodyning image processor
,”
Opt. Lett.
4
,
317
(
1979
).
29.
T. C.
Poon
,
Optical Scanning Holography with MATLAB™
(
Springer
,
2007
).
30.
J.-P.
Liu
,
T.
Tahara
,
Y.
Hayasaki
, and
T.-C.
Poon
, “
Incoherent digital holography: A review
,”
Appl. Sci.
8
,
143
(
2018
).
31.
J.
Rosen
and
G.
Brooker
, “
Digital spatially incoherent Fresnel holography
,”
Opt. Lett.
32
,
912
914
(
2007
).
32.
T.
Nobukawa
,
Y.
Katano
,
T.
Muroi
,
N.
Kinoshita
, and
N.
Ishii
, “
Sampling requirements and adaptive spatial averaging for incoherent digital holography
,”
Opt. Express
27
,
33634
(
2019
).
33.
S.
Sakamaki
,
N.
Yoneda
, and
T.
Nomura
, “
Single-shot in-line Fresnel incoherent holography using a dual-focus checkerboard lens
,”
Appl. Opt.
59
,
6612
6618
(
2020
).
34.
T.
Tahara
,
T.
Koujin
,
A.
Matsuda
,
A.
Ishii
,
T.
Ito
,
Y.
Ichihashi
, and
R.
Oi
, “
Incoherent color digital holography with computational coherent superposition for fluorescence imaging
,”
Appl. Opt.
60
,
A260
A267
(
2021
).
35.
B. W.
Schilling
,
T.-C.
Poon
,
G.
Indebetouw
,
B.
Storrie
,
K.
Shinoda
,
Y.
Suzuki
, and
M. H.
Wu
, “
Three-dimensional holographic fluorescence microscopy
,”
Opt. Lett.
22
,
1506
(
1997
).
36.
J.
Rosen
,
G.
Indebetouw
, and
G.
Brooker
, “
Homodyne scanning holography
,”
Opt. Express
14
,
4280
4285
(
2006
).
37.
G.
Indebetouw
and
W.
Zhong
, “
Scanning holographic microscopy of three-dimensional fluorescent specimens
,”
J. Opt. Soc. Am. A
23
,
1699
1707
(
2006
).
38.
G.
Indebetouw
,
Y.
Tada
, and
J.
Leacock
, “
Quantitative phase imaging with scanning holographic microscopy: An experimental assessment
,”
Biomed. Eng. online
5
,
63
(
2006
).
39.
H.
Kim
,
Y. S.
Kim
, and
T.
Kim
, “
Full-color optical scanning holography with common red, green, and blue channels
,”
Appl. Opt.
55
,
A17
A21
(
2016
).
40.
J.-P.
Liu
,
W.-T.
Chen
,
H.-H.
Wen
, and
T.-C.
Poon
, “
Recording of a curved digital hologram for orthoscopic real image reconstruction
,”
Opt. Lett.
45
,
4353
4356
(
2020
).
41.
A.
Essadike
,
E.
Ouabida
, and
A.
Bouzid
, “
Optical scanning holography for tumor extraction from brain magnetic resonance images
,”
Opt. Laser Technol.
127
,
106158
(
2020
).
42.
G.
Indebetouw
,
T.
Kim
,
T.-C.
Poon
, and
B. W.
Schilling
, “
Three-dimensional location of fluorescent inhomogeneities in turbid media by scanning heterodyne holography
,”
Opt. Lett.
23
,
135
(
1998
).
43.
P. W. M.
Tsang
and
T.-C.
Poon
, “
Non-diffractive optical scanning holography for hologram acquisition
,” in
Digital Holography and Three-Dimensional Imaging
2019 (
Optical Society of America
,
2019
), p.
Th1B.6
.
44.
T.
Kim
and
T.
Kim
, “
Coaxial scanning holography
,”
Opt. Lett.
45
,
2046
2049
(
2020
).
45.
N.
Yoneda
,
Y.
Saita
, and
T.
Nomura
, “
Motionless optical scanning holography
,”
Opt. Lett.
45
,
3184
3187
(
2020
).
46.
N.
Yoneda
,
Y.
Saita
, and
T.
Nomura
, “
Spatially divided phase-shifting motionless optical scanning holography
,”
OSA Continuum
3
,
3523
3535
(
2020
).
47.
K.
Komuro
,
Y.
Yamazaki
, and
T.
Nomura
, “
Transport-of-intensity computational ghost imaging
,”
Appl. Opt.
57
,
4451
4456
(
2018
).
48.
J.-P.
Liu
,
C.-H.
Guo
,
W.-J.
Hsiao
,
T.-C.
Poon
, and
P.
Tsang
, “
Coherence experiments in single-pixel digital holography
,”
Opt. Lett.
40
,
2366
2369
(
2015
).
49.
T.
Nobukawa
,
T.
Muroi
,
Y.
Katano
,
N.
Kinoshita
, and
N.
Ishii
, “
Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings
,”
Opt. Lett.
43
,
1698
1701
(
2018
).
50.
K.
Choi
,
J.
Yim
, and
S.-W.
Min
, “
Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens
,”
Opt. Express
26
,
16212
16225
(
2018
).
You do not currently have access to this content.