We offer a perspective on recent advances in picosecond-timescale all-optical switching with applications in quantum optics. The switch is based on polarization rotation in standard single-mode fiber via the optical Kerr effect. By using ultrafast laser pulses and short (∼10 cm) fibers, this technique can achieve a switching duration of 1 ps, at the repetition rate of 80 MHz or above. This high repetition rate is well-suited to quantum optics where experiments operate in the photon-counting regime. The switch efficiency can be 99% with a noise floor of just 104 photons/pulse, enabling high fidelity operations on quantum states of light, with negligible generation of spurious noise photons. We highlight the capabilities of this technique in four early applications: switching of heralded single photons, time-bin to polarization conversion of photonic qubits, noise gating for quantum key distribution, and pulse carving.

1.
Y.
Li
,
Y.-H.
Li
,
H.-B.
Xie
,
Z.-P.
Li
,
X.
Jiang
,
W.-Q.
Cai
,
J.-G.
Ren
,
J.
Yin
,
S.-K.
Liao
, and
C.-Z.
Peng
, “
High-speed robust polarization modulation for quantum key distribution
,”
Opt. Lett.
44
,
5262
5265
(
2019
).
2.
T. B.
Pittman
,
B. C.
Jacobs
, and
J. D.
Franson
, “
Single photons on pseudodemand from stored parametric down-conversion
,”
Phys. Rev. A
66
,
042303
(
2002
).
3.
T. B.
Pittman
and
J. D.
Franson
, “
Cyclical quantum memory for photonic qubits
,”
Phys. Rev. A
66
,
062302
(
2002
).
4.
F.
Kaneda
,
B. G.
Christensen
,
J. J.
Wong
,
H. S.
Park
,
K. T.
McCusker
, and
P. G.
Kwiat
, “
Time-multiplexed heralded single-photon source
,”
Optica
2
,
1010
1013
(
2015
).
5.
F.
Kaneda
and
P. G.
Kwiat
, “
High-efficiency single-photon generation via large-scale active time multiplexing
,”
Sci. Adv.
5
,
eaaw8586
(
2019
).
6.
F.
Kaneda
,
F.
Xu
,
J.
Chapman
, and
P. G.
Kwiat
, “
Quantum-memory-assisted multi-photon generation for efficient quantum information processing
,”
Optica
4
,
1034
1037
(
2017
).
7.
T. B.
Pittman
,
B. C.
Jacobs
, and
J. D.
Franson
, “
Demonstration of feed-forward control for linear optics quantum computation
,”
Phys. Rev. A
66
,
052305
(
2002
).
8.
E.
Knill
,
R.
Laflamme
, and
G. J.
Milburn
, “
A scheme for efficient quantum computation with linear optics
,”
Nature
409
,
46
52
(
2001
).
9.
H. P.
Specht
,
J.
Bochmann
,
M.
Mücke
,
B.
Weber
,
E.
Figueroa
,
D. L.
Moehring
, and
G.
Rempe
, “
Phase shaping of single-photon wave packets
,”
Nat. Photonics
3
,
469
472
(
2009
).
10.
J. M.
Dudley
,
G.
Genty
, and
S.
Coen
, “
Supercontinuum generation in photonic crystal fiber
,”
Rev. Mod. Phys.
78
,
1135
(
2006
).
11.
K.
Konno
and
H.
Suzuki
, “
Self-focussing of laser beam in nonlinear media
,”
Phys. Scr.
20
,
382
(
1979
).
12.
D. E.
Spence
,
P. N.
Kean
, and
W.
Sibbett
, “
60-fs pulse generation from a self-mode-locked Ti:sapphire laser
,”
Opt. Lett.
16
,
42
44
(
1991
).
13.
M.
Duguay
and
J.-W.
Hansen
, “
An ultrafast light gate
,”
Appl. Phys. Lett.
15
,
192
194
(
1969
).
14.
J. C.
Blake
,
J.
Nieto-Pescador
,
Z.
Li
, and
L.
Gundlach
, “
Ultraviolet femtosecond Kerr-gated wide-field fluorescence microscopy
,”
Opt. Lett.
41
,
2462
2465
(
2016
).
15.
P.
Matousek
,
M.
Towrie
,
A.
Stanley
, and
A. W.
Parker
, “
Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating
,”
Appl. Spectrosc.
53
,
1485
1489
(
1999
).
16.
C.
Kupchak
,
J.
Erskine
,
D.
England
, and
B.
Sussman
, “
Terahertz-bandwidth switching of heralded single photons
,”
Opt. Lett.
44
,
1427
1430
(
2019
).
17.
M. A.
Hall
,
J. B.
Altepeter
, and
P.
Kumar
, “
Ultrafast switching of photonic entanglement
,”
Phys. Rev. Lett.
106
,
053901
(
2011
).
18.
M. A.
Hall
,
J. B.
Altepeter
, and
P.
Kumar
, “
All-optical switching of photonic entanglement
,”
New J. Phys.
13
,
105004
(
2011
).
19.
G.
Agrawal
,
Applications of Nonlinear Fiber Optics
(
Academic Press
,
2001
).
20.
N.
Doran
and
D.
Wood
, “
Nonlinear-optical loop mirror
,”
Opt. Lett.
13
,
56
58
(
1988
).
21.
K. J.
Blow
,
N. J.
Doran
,
B. K.
Nayar
, and
B. P.
Nelson
, “
Two-wavelength operation of the nonlinear fiber loop mirror
,”
Opt. Lett.
15
,
248
250
(
1990
).
22.
N. N.
Oza
,
Y.-P.
Huang
, and
P.
Kumar
, “
Entanglement-preserving photonic switching: Full cross-bar operation with quantum data streams
,”
IEEE Photonics Technol. Lett.
26
,
356
359
(
2014
).
23.
S. J.
Nowierski
,
N. N.
Oza
,
P.
Kumar
, and
G. S.
Kanter
, “
Tomographic reconstruction of time-bin-entangled qudits
,”
Phys. Rev. A
94
,
042328
(
2016
).
24.
H. P.
Deuel
,
P.
Cong
, and
J. D.
Simon
, “
Probing intermolecular dynamics in liquids by femtosecond optical Kerr effect spectroscopy: Effects of molecular symmetry
,”
J. Phys. Chem.
98
,
12600
12608
(
1994
).
25.
B. J.
Sussman
,
J. G.
Underwood
,
R.
Lausten
,
M. Y.
Ivanov
, and
A.
Stolow
, “
Quantum control via the dynamic stark effect: Application to switched rotational wave packets and molecular axis alignment
,”
Phys. Rev. A
73
,
053403
(
2006
).
26.
B.
Smith
,
J. P.
Mahou
,
O.
Cohen
,
J. S.
Lundeen
, and
I. A.
Walmsley
, “
Photon pair generation in birefringent optical fibers
,”
Opt. Express
17
,
023589
(
2009
).
27.
P.
Grangier
,
G.
Roger
, and
A.
Aspect
, “
Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences
,”
Europhys. Lett.
1
,
173
(
1986
).
28.
P.
Toliver
,
J. M.
Dailey
,
A.
Agarwal
, and
N. A.
Peters
, “
Continuously active interferometer stabilization and control for time-bin entanglement distribution
,”
Opt. Express
23
,
4135
4143
(
2015
).
29.
N. T.
Islam
,
C.
Cahall
,
A.
Aragoneses
,
A.
Lezama
,
J.
Kim
, and
D. J.
Gauthier
, “
Robust and stable delay interferometers with application to d-dimensional time-frequency quantum key distribution
,”
Phys. Rev. Appl.
7
,
044010
(
2017
).
30.
C.
Kupchak
,
P. J.
Bustard
,
K.
Heshami
,
J.
Erskine
,
M.
Spanner
,
D. G.
England
, and
B. J.
Sussman
, “
Time-bin-to-polarization conversion of ultrafast photonic qubits
,”
Phys. Rev. A
96
,
053812
(
2017
).
31.
F.
Bouchard
,
D.
England
,
P. J.
Bustard
,
K.
Heshami
, and
B.
Sussman
, “
Quantum communication with ultrafast time-bin qubits
,” preprint arXiv:2106.09833 (
2021
).
32.
S.
Ecker
,
F.
Bouchard
,
L.
Bulla
,
F.
Brandt
,
O.
Kohout
,
F.
Steinlechner
,
R.
Fickler
,
M.
Malik
,
Y.
Guryanova
,
R.
Ursin
, and
M.
Huber
, “
Overcoming noise in entanglement distribution
,”
Phys. Rev. X
9
,
041042
(
2019
).
33.
F.
Bouchard
,
D.
England
,
P. J.
Bustard
,
K. L.
Fenwick
,
E.
Karimi
,
K.
Heshami
, and
B.
Sussman
, “
Achieving ultimate noise tolerance in quantum communication
,”
Phys. Rev. Appl.
15
,
024027
(
2021
).
34.
V.
Blanchet
,
M. Z.
Zgierski
,
T.
Seideman
, and
A.
Stolow
, “
Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy
,”
Nature
401
,
52
54
(
1999
).
35.
S.
Woutersen
,
U.
Emmerichs
, and
H. J.
Bakker
, “
Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure
,”
Science
278
,
658
660
(
1997
).
36.
Z.
Zhu
,
J.
Crochet
,
M. S.
Arnold
,
M. C.
Hersam
,
H.
Ulbricht
,
D.
Resasco
, and
T.
Hertel
, “
Pump-probe spectroscopy of exciton dynamics in (6,5) carbon nanotubes
,”
J. Phys. Chem. C
111
,
3831
3835
(
2007
).
37.
E.
Dekel
,
D. V.
Regelman
,
D.
Gershoni
,
E.
Ehrenfreund
,
W. V.
Schoenfeld
, and
P. M.
Petroff
, “
Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy
,”
Phys. Rev. B
62
,
11038
11045
(
2000
).
38.
L.
Moller
,
Y.
Su
,
X.
Liu
,
J.
Leuthold
, and
C.
Xie
, “
Ultrahigh-speed optical phase correlated data signals
,”
IEEE Photonics Technol. Lett.
15
,
1597
1599
(
2003
).
39.
K. L.
Fenwick
,
D. G.
England
,
P. J.
Bustard
,
J. M.
Fraser
, and
B. J.
Sussman
, “
Carving out configurable ultrafast pulses from a continuous wave source via the optical Kerr effect
,”
Opt. Express
28
,
24845
24853
(
2020
).
40.
M.
Wesseli
,
C.
Ruppert
,
S.
Trumm
,
H. J.
Krenner
,
J. J.
Finley
, and
M.
Betz
, “
Nonlinear optical response of a single self-assembled InGaAs quantum dot: A femtojoule pump-probe experiment
,”
Appl. Phys. Lett.
88
,
203110
(
2006
).
41.
M.
Namboodiri
,
T.
Khan
,
K.
Karki
,
M. M.
Kazemi
,
S.
Bom
,
G.
Flachenecker
,
V.
Namboodiri
, and
A.
Materny
, “
Nonlinear spectroscopy in the near-field: Time resolved spectroscopy and subwavelength resolution non-invasive imaging
,”
Nanophotonics
3
,
61
73
(
2014
).
42.
K.
Karki
,
M.
Namboodiri
,
T.
Zeb Khan
, and
A.
Materny
, “
Pump-probe scanning near field optical microscopy: Sub-wavelength resolution chemical imaging and ultrafast local dynamics
,”
Appl. Phys. Lett.
100
,
153103
(
2012
).
43.
J. M.
Donohue
,
M. D.
Mazurek
, and
K. J.
Resch
, “
Theory of high-efficiency sum-frequency generation for single-photon waveform conversion
,”
Phys. Rev. A
91
,
033809
(
2015
).
44.
A.
Eckstein
,
B.
Brecht
, and
C.
Silberhorn
, “
A quantum pulse gate based on spectrally engineered sum frequency generation
,”
Opt. Express
19
,
13770
13778
(
2011
).
45.
J.
Lavoie
,
J. M.
Donohue
,
L. G.
Wright
,
A.
Fedrizzi
, and
K. J.
Resch
, “
Spectral compression of single photons
,”
Nat. Photonics
7
,
363
366
(
2013
).
46.
J. M.
Donohue
,
M.
Agnew
,
J.
Lavoie
, and
K. J.
Resch
, “
Coherent ultrafast measurement of time-bin encoded photons
,”
Phys. Rev. Lett.
111
,
153602
(
2013
).
47.
J. M.
Donohue
,
J.
Lavoie
, and
K. J.
Resch
, “
Ultrafast time-division demultiplexing of polarization-entangled photons
,”
Phys. Rev. Lett.
113
,
163602
(
2014
).
48.
B.
Brecht
,
A.
Eckstein
,
A.
Christ
,
H.
Suche
, and
C.
Silberhorn
, “
From quantum pulse gate to quantum pulse shaper–engineered frequency conversion in nonlinear optical waveguides
,”
New J. Phys.
13
,
065029
(
2011
).
49.
V.
Ansari
,
G.
Harder
,
M.
Allgaier
,
B.
Brecht
, and
C.
Silberhorn
, “
Temporal-mode measurement tomography of a quantum pulse gate
,”
Phys. Rev. A
96
,
063817
(
2017
).
50.
V.
Ansari
,
J. M.
Donohue
,
B.
Brecht
, and
C.
Silberhorn
, “
Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings
,”
Optica
5
,
534
550
(
2018
).
51.
M.
Allgaier
,
G.
Vigh
,
V.
Ansari
,
C.
Eigner
,
V.
Quiring
,
R.
Ricken
,
B.
Brecht
, and
C.
Silberhorn
, “
Fast time-domain measurements on telecom single photons
,”
Quantum Sci. Technol.
2
,
034012
(
2017
).
52.
D. V.
Reddy
and
M. G.
Raymer
, “
High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry
,”
Optica
5
,
423
428
(
2018
).
53.
J.-P. W.
MacLean
,
J. M.
Donohue
, and
K. J.
Resch
, “
Direct characterization of ultrafast energy-time entangled photon pairs
,”
Phys. Rev. Lett.
120
,
053601
(
2018
).
54.
J.-P. W.
MacLean
,
J. M.
Donohue
, and
K. J.
Resch
, “
Ultrafast quantum interferometry with energy-time entangled photons
,”
Phys. Rev. A
97
,
063826
(
2018
).
55.
J. S.
Lundeen
,
B.
Sutherland
,
A.
Patel
,
C.
Stewart
, and
C.
Bamber
, “
Direct measurement of the quantum wavefunction
,”
Nature
474
,
188
191
(
2011
).
56.
K.
Ogawa
,
T.
Okazaki
,
H.
Kobayashi
,
T.
Nakanishi
, and
A.
Tomita
, “
Direct measurement of ultrafast temporal wavefunctions
,”
Opt. Express
29
,
19403
19416
(
2021
).
57.
S.
Zhang
,
Y.
Zhou
,
Y.
Mei
,
K.
Liao
,
Y.-L.
Wen
,
J.
Li
,
X.-D.
Zhang
,
S.
Du
,
H.
Yan
, and
S.-L.
Zhu
, “
δ-quench measurement of a pure quantum-state wave function
,”
Phys. Rev. Lett.
123
,
190402
(
2019
).
58.
J.
Takeda
,
K.
Nakajima
,
S.
Kurita
,
S.
Tomimoto
,
S.
Saito
, and
T.
Suemoto
, “
Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes
,”
Phys. Rev. B
62
,
10083
10087
(
2000
).
59.
T.
Fujino
,
T.
Fujima
, and
T.
Tahara
, “
Picosecond time-resolved imaging by nonscanning fluorescence Kerr gate microscope
,”
Appl. Phys. Lett.
87
,
131105
(
2005
).
60.
T.
Fujino
,
S. Y.
Arzhantsev
, and
T.
Tahara
, “
Femtosecond/picosecond time-resolved spectroscopy of trans-azobenzene: Isomerization mechanism following S2(ππ*)S0 photoexcitation
,”
Bull. Chem. Soc. Jpn.
75
,
1031
1040
(
2002
).
61.
A.-H.
Fattah
,
A. M.
Flatae
,
A.
Farrag
, and
M.
Agio
, “
Ultrafast single-photon detection at high repetition rates based on optical Kerr gates under focusing
,”
Opt. Lett.
46
,
560
563
(
2021
).
You do not currently have access to this content.