Despite extensive reports on highly efficient perovskite light-emitting diodes, rules governing the design of suitable two-dimensional (2D) perovskite templating cation to facilitate formation of optimal emitter landscape for energy cascade remain largely elusive. With factors such as structure, size, functionalization, and charge capable of influencing the distribution of multidimensional perovskite phases, the importance of 2D templating cation design in determining film optoelectronic properties is indisputable. However, typical mono-functionalized 2D templating cations often result in larger lead halide octahedral spacing, which impedes effective charge transport. This has fueled investigation into the use of multiple cations for optimal domain distribution and improved charge transfer kinetics to the emitting species. In this study, we attempt to impart enhanced charge transfer characteristics to the resultant multidimensional perovskite by employing two bi-functionalized aromatic cations, namely, pyridinium ethyl ammonium and imidazolium ethyl ammonium, reminiscent of mono-functionalized phenyl ethyl ammonium, a widely used 2D perovskite templating cation. Although it is proposed that greater intermolecular bonding would enhance charge transfer rates, the simultaneous increase in lead halide octahedral distortion results in quenching of their corresponding 2D and multidimensional perovskite luminescence properties, correlated with increased defect density within the material. This manifests in the form of shorter PL decay lifetimes, lower PLQY, and device performance arising from inferior energy funneling. This study highlights the importance of designing 2D perovskite templating cations offering better transport and reduced octahedral distortion for the development of energy cascade-efficient, multidimensional perovskites.

1.
S. A.
Veldhuis
,
P. P.
Boix
,
N.
Yantara
 et al, “
Perovskite materials for light-emitting diodes and lasers
,”
Adv. Mater.
28
,
6804
6834
(
2016
).
2.
L.
Xu
,
S.
Yuan
,
H.
Zeng
 et al, “
A comprehensive review of doping in perovskite nanocrystals/quantum dots: Evolution of structure, electronics, optics, and light-emitting diodes
,”
Mater. Today Nano
6
,
100036
(
2019
).
3.
K.
Lin
,
J.
Xing
,
L. N.
Quan
 et al, “
Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent
,”
Nature
562
(
7726
),
245
248
(
2018
).
4.
S.
Lee
,
D. B.
Kim
,
J. C.
Yu
 et al, “
Versatile defect passivation methods for metal halide perovskite materials and their application to light-emitting devices
,”
Adv. Mater.
31
(
20
),
1805244
(
2019
).
5.
S.
Colella
,
M.
Mazzeo
,
A.
Rizzo
 et al, “
The bright side of perovskites
,”
J. Phys. Chem. Lett.
7
(
21
),
4322
4334
(
2016
).
6.
T.
Zhao
,
C.-C.
Chueh
,
Q.
Chen
 et al, “
Defect passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices
,”
ACS Energy Lett.
1
(
4
),
757
763
(
2016
).
7.
X. Y.
Chin
,
A.
Perumal
,
A.
Bruno
 et al, “
Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade
,”
Energy Environ. Sci.
11
(
7
),
1770
1778
(
2018
).
8.
L. N.
Quan
,
Y.
Zhao
,
F. P. G.
de Arquer
 et al, “
Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission
,”
Nano Lett.
17
(
6
),
3701
3709
(
2017
).
9.
N.
Yantara
,
A.
Bruno
,
A.
Iqbal
 et al, “
Designing efficient energy funneling kinetics in Ruddlesden–Popper perovskites for high-performance light-emitting diodes
,”
Adv. Mater.
30
(
33
),
1800818
(
2018
).
10.
Y. F.
Ng
,
S. A.
Kulkarni
,
S.
Parida
 et al, “
Highly efficient Cs-based perovskite light-emitting diodes enabled by energy funnelling
,”
Chem. Commun.
53
(
88
),
12004
12007
(
2017
).
11.
J.
Guo
,
Z.
Shi
,
J.
Xia
 et al, “
Phase tailoring of Ruddlesden–Popper perovskite at fixed large spacer cation ratio
,”
Small
17
,
2100560
(
2021
).
12.
M.
Yuan
,
L. N.
Quan
,
R.
Comin
 et al, “
Perovskite energy funnels for efficient light-emitting diodes
,”
Nat. Nanotechnol.
11
,
872
(
2016
).
13.
M.
Yu
,
C.
Yi
,
N.
Wang
 et al, “
Control of barrier width in perovskite multiple quantum wells for high performance green light–emitting diodes
,”
Adv. Opt. Mater.
7
(
3
),
1801575
(
2019
).
14.
Y.
Jiang
,
C.
Qin
,
M.
Cui
 et al, “
Spectra stable blue perovskite light-emitting diodes
,”
Nat. Commun.
10
(
1
),
1868
(
2019
).
15.
T.
Zhang
,
L.
Xie
,
L.
Chen
 et al, “
In situ fabrication of highly luminescent bifunctional amino acid crosslinked 2D/3D NH3C4H9COO(CH3NH3PbBr3)n perovskite films
,”
Adv. Funct. Mater.
27
(
1
),
1603568
(
2017
).
16.
B.
Febriansyah
,
T. M.
Koh
,
Y.
Lekina
 et al, “
Improved photovoltaic efficiency and amplified photocurrent generation in mesoporous n = 1 two-dimensional lead–iodide perovskite solar cells
,”
Chem. Mater.
31
(
3
),
890
898
(
2019
).
17.
D.
Phuyal
,
M.
Safdari
,
M.
Pazoki
 et al, “
Electronic structure of two-dimensional lead(II) iodide perovskites: An experimental and theoretical study
,”
Chem. Mater.
30
(
15
),
4959
4967
(
2018
).
18.
L.
Mao
,
W.
Ke
,
L.
Pedesseau
 et al, “
Hybrid dion–Jacobson 2D lead iodide perovskites
,”
J. Am. Chem. Soc.
140
(
10
),
3775
3783
(
2018
).
19.
M. E.
Kamminga
,
G. A.
de Wijs
,
R. W. A.
Havenith
 et al, “
The role of connectivity on electronic properties of lead iodide perovskite-derived compounds
,”
Inorg. Chem.
56
(
14
),
8408
8414
(
2017
).
20.
J. L.
Knutson
,
J. D.
Martin
, and
D. B.
Mitzi
, “
Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating
,”
Inorg. Chem.
44
(
13
),
4699
4705
(
2005
).
21.
F.
Krieg
,
S. T.
Ochsenbein
,
S.
Yakunin
 et al, “
Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability
,”
ACS Energy Lett.
3
(
3
),
641
646
(
2018
).
22.
Z.
Ren
,
J.
Yu
,
Z.
Qin
 et al, “
High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers
,”
Adv. Mater.
33
(
1
),
2005570
(
2021
).
23.
Y.
Shang
,
Y.
Liao
,
Q.
Wei
 et al, “
Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure
,”
Sci. Adv.
5
(
8
),
eaaw8072
(
2019
).
24.
B.
Febriansyah
,
Y.
Lekina
,
B.
Ghosh
 et al, “
Molecular engineering of pure 2D lead-iodide perovskite solar absorbers displaying reduced band gaps and dielectric confinement
,”
ChemSusChem
13
(
10
),
2693
2701
(
2020
).
25.
K.
Pradeesh
,
K. N.
Rao
, and
G. V.
Prakash
, “
Synthesis, structural, thermal and optical studies of inorganic-organic hybrid semiconductors, R-PbI4
,”
J. Appl. Phys.
113
(
8
),
083523
(
2013
).
26.
E. R.
Dohner
,
E. T.
Hoke
, and
H. I.
Karunadasa
, “
Self-assembly of broadband white-light emitters
,”
J. Am. Chem. Soc.
136
(
5
),
1718
1721
(
2014
).
27.
L.
Mao
,
Y.
Wu
,
C. C.
Stoumpos
 et al, “
White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites
,”
J. Am. Chem. Soc.
139
(
14
),
5210
5215
(
2017
).
28.
T.
Hu
,
M. D.
Smith
,
E. R.
Dohner
 et al, “
Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites
,”
J. Phys. Chem. Lett.
7
(
12
),
2258
2263
(
2016
).
29.
D.
Cortecchia
,
J.
Yin
,
A.
Bruno
, et al “
Polaron self-localization in white-light emitting hybrid perovskites
,” arXiv:1603.01284v2 (
2019
).
30.
D.
Cortecchia
,
S.
Neutzner
,
A. R. S.
Kandada
 et al, “
Broadband emission in two-dimensional hybrid perovskites: The role of structural deformation
,”
J. Am. Chem. Soc.
139
(
1
),
39
42
(
2017
).
31.
B.
Saparov
and
D. B.
Mitzi
, “
Organic–inorganic perovskites: Structural versatility for functional materials design
,”
Chem. Rev.
116
(
7
),
4558
4596
(
2016
).
32.
M. W.
Lufaso
and
P. M.
Woodward
, “
Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites
,”
Acta Crystallogr., Sect. B
60
(
1
),
10
20
(
2004
).
33.
K.
Robinson
,
G. V.
Gibbs
, and
P. H.
Ribbe
, “
Quadratic elongation: A quantitative measure of distortion in coordination polyhedra
,”
Science
172
(
3983
),
567
(
1971
).
34.
B.
Febriansyah
,
T.
Borzda
,
D.
Cortecchia
 et al, “
Metal coordination sphere deformation induced highly stokes-shifted, ultra broadband emission in 2D hybrid lead-bromide perovskites and investigation of its origin
,”
Angew. Chem. Int. Ed.
59
(
27
),
10791
10796
(
2020
).
35.
N.
Wang
,
L.
Cheng
,
R.
Ge
 et al, “
Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells
,”
Nat. Photonics Lett.
10
(
11
),
699
704
(
2016
).
36.
X.
Yang
,
X.
Zhang
,
J.
Deng
 et al, “
Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation
,”
Nat. Commun.
9
(
1
),
570
(
2018
).
37.
Z.
Fang
,
W.
Chen
,
Y.
Shi
 et al, “
Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20%
,”
Adv. Funct. Mater.
30
(
12
),
1909754
(
2020
).
38.
Y. F.
Ng
,
B.
Febriansyah
,
N. F.
Jamaludin
 et al, “
Design of 2D templating molecules for mixed-dimensional perovskite light-emitting diodes
,”
Chem. Mater.
32
(
19
),
8097
8105
(
2020
).

Supplementary Material

You do not currently have access to this content.