Photoelectrochemical water-splitting is a possible path toward sustainably produced hydrogen, which is a potential solar fuel of the future. Complex tuning of material properties is necessary to further enhance efficiency and, therefore, ensure economic viability of this process. In this study, the influence of Ti-site substitution in the perovskite-related oxynitride LaTi(O,N)3 is investigated. Oxide materials, La2Ti2-2xNb2xO7±δ without and with a substitution of up to 8% of the Ti-sites, are synthesized and, subsequently, transformed into the corresponding phase pure oxynitrides, LaTi1-xNbx(O,N)3±δ. The incorporation of Nb is confirmed via x-ray diffraction and energy dispersive spectroscopy. Changes in morphology, nitrogen content, optical properties, and charge carrier density are investigated using scanning electron microscopy, gas adsorption, thermal gravimetric analysis, and UV-vis and electrochemical impedance spectroscopies. Charge compensation of the positive charge introduced by Nb5+ via additional N3− incorporation is identified as a mechanism that occurs during thermal ammonolysis and results in an increased N content in substituted compounds, probably preventing charge carrier density increase. An improvement of up to 30% of the photocurrent density at 1.23 V vs RHE is achieved for x = 0.01 in comparison to unsubstituted LaTi(O,N)3. The performance increase in this material is related to a reduction in (crystalline) defects at low substitution degrees. These results underline the necessity to tune the synthesis conditions carefully for material design.

1.
E.
Rozzi
,
F. D.
Minuto
,
A.
Lanzini
, and
P.
Leone
,
Energies
13
,
420
(
2020
);
I.
Dincer
and
C.
Acar
,
Int. J. Energy Res.
39
,
585
(
2015
).
2.
J.
Nowotny
,
C. C.
Sorrell
,
L. R.
Sheppard
, and
T.
Bak
,
Int. J. Hydrogen Energy
30
,
521
(
2005
);
M.
Grätzel
,
Nature
414
,
338
(
2001
);
[PubMed]
A.
Fujishima
and
K.
Honda
,
Nature
238
,
37
(
1972
).
[PubMed]
3.
J. H.
Kim
,
D.
Hansora
,
P.
Sharma
,
J.-W.
Jang
, and
J. S.
Lee
,
Chem. Soc. Rev.
48
,
1908
(
2019
).
4.
B. A.
Pinaud
,
J. D.
Benck
,
L. C.
Seitz
,
A. J.
Forman
,
Z.
Chen
,
T. G.
Deutsch
,
B. D.
James
,
K. N.
Baum
,
G. N.
Baum
,
S.
Ardo
,
H.
Wang
,
E.
Miller
, and
T. F.
Jaramillo
,
Energy Environ. Sci.
6
,
1983
(
2013
);
T.
Hisatomi
and
K.
Domen
,
Faraday Discuss.
198
,
11
(
2017
).
[PubMed]
5.
T.
Hisatomi
,
J.
Kubota
, and
K.
Domen
,
Chem. Soc. Rev.
43
,
7520
(
2014
).
6.
K.
Maeda
,
Phys. Chem. Chem. Phys.
15
,
10537
(
2013
).
7.
S.
Pokrant
,
A. E.
Maegli
,
G. L.
Chiarello
, and
A.
Weidenkaff
,
CHIMIA Int. J. Chem.
67
,
162
(
2013
).
8.
F.
Zhang
,
A.
Yamakata
,
K.
Maeda
,
Y.
Moriya
,
T.
Takata
,
J.
Kubota
,
K.
Teshima
,
S.
Oishi
, and
K.
Domen
,
J. Am. Chem. Soc.
134
,
8348
(
2012
).
9.
A. E.
Maegli
,
T.
Hisatomi
,
E. H.
Otal
,
S.
Yoon
,
S.
Pokrant
,
M.
Grätzel
, and
A.
Weidenkaff
,
J. Mater. Chem.
22
,
17906
(
2012
).
10.
J. J.
Brown
,
Z.
Ke
,
T.
Ma
, and
A. J.
Page
,
ChemNanoMat
6
,
708
(
2020
).
11.
M.
Hojamberdiev
and
K.
Kawashima
,
Energy Rep.
6
,
13
(
2020
).
12.
S. G.
Ebbinghaus
,
H.-P.
Abicht
,
R.
Dronskowski
,
T.
Müller
,
A.
Reller
, and
A.
Weidenkaff
,
Prog. Solid State Chem.
37
,
173
(
2009
).
13.
W.-J.
Yin
,
B.
Weng
,
J.
Ge
,
Q.
Sun
,
Z.
Li
, and
Y.
Yan
,
Energy Environ. Sci.
12
,
442
(
2019
).
14.
Q.
Wang
and
K.
Domen
,
Chem. Rev.
120
,
919
(
2020
).
15.
Y. K.
Gaudy
,
S.
Dilger
,
S.
Landsmann
,
U.
Aschauer
,
S.
Pokrant
, and
S.
Haussener
,
J. Mater. Chem. A
6
,
17337
(
2018
).
16.
A.
Kasahara
,
K.
Nukumizu
,
G.
Hitoki
,
T.
Takata
,
J. N.
Kondo
,
M.
Hara
,
H.
Kobayashi
, and
K.
Domen
,
J. Phys. Chem. A
106
,
6750
(
2002
).
17.
F.
Wu
,
G.
Liu
, and
X.
Xu
,
J. Catal.
346
,
10
(
2017
).
18.
K.
Kawashima
,
M.
Hojamberdiev
,
H.
Wagata
,
M.
Nakayama
,
K.
Yubuta
,
S.
Oishi
,
K.
Domen
, and
K.
Teshima
,
Catal. Sci. Technol.
6
,
5389
(
2016
).
19.
Y. K.
Gaudy
,
S.
Dilger
,
S.
Pokrant
, and
S.
Haussener
,
J. Phys. Chem. C
123
,
26082
(
2019
).
20.
J.
Seo
,
H.
Nishiyama
,
T.
Yamada
, and
K.
Domen
,
Angew. Chem. Int. Ed.
57
,
8396
(
2018
).
21.
G.
Talasila
,
S.
Sachdev
,
U.
Srivastva
,
D.
Saxena
, and
S. S. V.
Ramakumar
,
Energy Rep.
6
,
1963
(
2020
).
22.
M.
Huang
,
J.
Bian
,
W.
Xiong
,
C.
Huang
, and
R.
Zhang
,
J. Mater. Chem. A
6
,
3602
(
2018
).
23.
F. F.
Abdi
,
N.
Firet
, and
R.
van de Krol
,
ChemCatChem
5
,
490
(
2013
).
24.
M.
Gasperin
,
Acta Crystallogr. Sect. B
31
,
2129
(
1975
).
25.
M.
Yashima
,
M.
Saito
,
H.
Nakano
,
T.
Takata
,
K.
Ogisu
, and
K.
Domen
,
Chem. Commun.
46
,
4704
(
2010
).
26.
S.
Yoon
,
A. E.
Maegli
,
A.
Eyssler
,
M.
Trottmann
,
T.
Hisatomi
,
C. M.
Leroy
,
M.
Grätzel
, and
A.
Weidenkaff
,
Energy Procedia
22
,
41
(
2012
).
27.
A.
Maegli
,
S.
Yoon
,
E.
Otal
,
L.
Karvonen
,
P.
Mandaliev
, and
A.
Weidenkaff
,
J. Solid State Chem.
184
,
929
(
2011
).
28.
S.
Pokrant
,
S.
Dilger
, and
S.
Landsmann
,
J. Mater. Res.
31
,
1574
(
2016
).
29.
S.
Landsmann
,
A. E.
Maegli
,
M.
Trottmann
,
C.
Battaglia
,
A.
Weidenkaff
, and
S.
Pokrant
,
ChemSusChem
8
,
3451
(
2015
).
30.
H.
Wagata
,
N.
Zettsu
,
A.
Yamaguchi
,
H.
Nishikiori
,
K.
Yubuta
,
S.
Oishi
, and
K.
Teshima
,
Cryst. Growth Des.
15
,
124
(
2015
).
31.
N. A.
Seaton
,
J. P. R. B.
Walton
, and
N.
Quirke
,
Carbon
27
,
853
(
1989
).
32.
S.
Brunauer
,
P. H.
Emmett
, and
E.
Teller
,
J. Am. Chem. Soc.
60
,
309
(
1938
).
33.
A. E.
Maegli
,
S.
Pokrant
,
T.
Hisatomi
,
M.
Trottmann
,
K.
Domen
, and
A.
Weidenkaff
,
J. Phys. Chem. C
118
,
16344
(
2014
);
K.
Kawashima
,
M.
Hojamberdiev
,
H.
Wagata
,
K.
Yubuta
,
J. J. M.
Vequizo
,
A.
Yamakata
,
S.
Oishi
,
K.
Domen
, and
K.
Teshima
,
J. Phys. Chem. C
119
,
15896
(
2015
);
S.
Pokrant
,
M. C.
Cheynet
,
S.
Irsen
,
A. E.
Maegli
, and
R.
Erni
,
J. Phys. Chem. C
118
,
20940
(
2014
).
34.
T.
Takata
,
C.
Pan
, and
K.
Domen
,
ChemElectroChem
3
,
31
(
2016
).
35.
C.
Le Paven-Thivet
,
A.
Ishikawa
,
A.
Ziani
,
L. L.
Gendre
,
M.
Yoshida
,
J.
Kubota
,
F.
Tessier
, and
K.
Domen
,
J. Phys. Chem. C
113
,
6156
(
2009
).
36.
A. E.
Maegli
,
L.
Sagarna
,
S.
Populoh
,
B.
Penkala
,
E. H.
Otal
, and
A.
Weidenkaff
,
J. Solid State Chem.
211
,
106
(
2014
);
; T.
Takata
and
K.
Domen
,
Dalton Trans.
46
,
10529
(
2017
);
[PubMed]
J.
Seo
,
T.
Hisatomi
,
M.
Nakabayashi
,
N.
Shibata
,
T.
Minegishi
,
M.
Katayama
, and
K.
Domen
,
Adv. Energy Mater.
8
,
1800094
(
2018
).
37.
J. H.
Kim
and
J. S.
Lee
,
Adv. Mater.
31
,
1806938
(
2019
).
38.
S.
Landsmann
,
Y.
Surace
,
M.
Trottmann
,
S.
Dilger
,
A.
Weidenkaff
, and
S.
Pokrant
,
ACS Appl. Mater. Interfaces
8
,
12149
(
2016
);
[PubMed]
; S.
Dilger
,
M.
Trottmann
, and
S.
Pokrant
,
ChemSusChem
12
,
1931
(
2019
).
[PubMed]
39.
S.
Pokrant
,
S.
Dilger
,
S.
Landsmann
, and
M.
Trottmann
,
Mater. Today Energy
5
,
158
(
2017
).

Supplementary Material

You do not currently have access to this content.