Group III-nitride alloys are believed to be promising photoelectrodes for photoelectrochemical water splitting to get hydrogen fuel. Here, we grew the InGaN nanowires (NWs) on silicon (111) as a photoanode using a low-cost chemical vapor deposition method. The photocurrent of an InGaN NWs' photoanode is five times greater than that of a GaN NWs' photoanode. The maximum photocurrent density of 8 mA/cm2 at 0.5 V vs the reverse hydrogen electrode with an applied bias photon-to-current efficiency of 5.8% was observed in the In30Ga70N NWs/Si (111) heterostructure. The incident photon-to-current conversion efficiency of 19.1% at 520 nm was observed for In30Ga70N NWs' photoanodes, which is much higher than GaN NWs. The hydrogen generation rates are 42.3 μmol/cm2 h at 0.15 V under 100 mW/cm2 white light irradiation. This InGaN/Si heterostructure photoanode improves photoelectrochemical performance for hydrogen fuel generation, paving the path for future development at a lower cost and on a larger scale.

1.
Y.
Qu
and
X.
Duan
,
Chem. Soc. Rev.
42
,
2568
(
2013
).
2.
T.
Hisatomi
and
K.
Domen
,
Faraday Discuss.
198
,
11
(
2017
).
3.
S.
Chu
,
W.
Li
,
Y.
Yan
,
T.
Hamann
,
I.
Shih
,
D.
Wang
, and
Z.
Mi
,
Nano Futures
1
,
022001
(
2017
).
4.
J. A.
Turner
,
Science
305
,
972
(
2004
).
5.
Y.
Tachibana
,
L.
Vayssieres
, and
J. R.
Durrant
,
Nat. Photonics
6
,
511
(
2012
).
6.
N. S.
Lewis
and
D. G.
Nocera
,
Proc. Natl. Acad. Sci.
103
,
15729
(
2006
).
7.
A.
Fujishima
and
K.
Honda
,
Nature
238
,
37
(
1972
).
8.
W.
Kreuter
and
H.
Hofmann
,
Int. J. Hydrogen Energy
23
,
661
(
1998
).
9.
M. H.
Lee
,
K.
Takei
,
J.
Zhang
,
R.
Kapadia
,
M.
Zheng
,
Y.-Z.
Chen
,
J.
Nah
,
T. S.
Matthews
,
Y.-L.
Chueh
,
J. W.
Ager
, and
A.
Javey
,
Angew. Chem., Int. Ed.
51
,
10760
(
2012
).
10.
K.
Maeda
,
K.
Teramura
,
D.
Lu
,
T.
Takata
,
N.
Saito
,
Y.
Inoue
, and
K.
Domen
,
Nature
440
,
295
(
2006
).
11.
K.
Sivula
and
R.
van de Krol
,
Nat. Rev. Mater.
1
,
15010
(
2016
).
12.
Y.-H.
Chiu
,
T.-H.
Lai
,
M.-Y.
Kuo
,
P.-Y.
Hsieh
, and
Y.-J.
Hsu
,
APL Mater.
7
,
080901
(
2019
).
13.
M.
Grätzel
,
Nature
414
,
338
(
2001
).
14.
K.
Song
,
H.
Lee
,
M.
Lee
, and
J. Y.
Park
,
ACS Energy Lett.
6
,
1333
(
2021
).
15.
J.
Benton
,
J.
Bai
, and
T.
Wang
,
Appl. Phys. Lett.
102
,
173905
(
2013
).
16.
X.
Li
,
C.
Yang
,
J.
Li
,
X.
Xi
,
Z.
Ma
,
S.
Lin
, and
L.
Zhao
,
Appl. Surf. Sci.
526
,
146618
(
2020
).
17.
P.
Sahoo
,
S.
Dhara
,
S.
Dash
,
B.
Raj
,
I.
Manna
, and
A. K.
Tyagi
,
Appl. Phys. Lett.
98
,
043103
(
2011
).
18.
T.
Hayashi
,
M.
Deura
, and
K.
Ohkawa
,
Jpn. J. Appl. Phys., Part 1
51
,
112601
(
2012
).
19.
Y.
Hou
,
Z. A.
Syed
,
L.
Jiu
,
J.
Bai
, and
T.
Wang
,
Appl. Phys. Lett.
111
,
203901
(
2017
).
20.
K.
Aryal
,
B. N.
Pantha
,
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
96
,
052110
(
2010
).
21.
J.
Benton
,
J.
Bai
, and
T.
Wang
,
Appl. Phys. Lett.
105
,
223902
(
2014
).
22.
D.
Cao
,
H.
Xiao
,
Q.
Gao
,
X.
Yang
,
C.
Luan
,
H.
Mao
,
J.
Liu
, and
X.
Liu
,
Nanoscale
9
,
11504
(
2017
).
23.
S.
Fan
,
I.
Shih
, and
Z.
Mi
,
Adv. Energy Mater.
7
,
1600952
(
2017
).
24.
S.
Vanka
,
B.
Zhou
,
R. A.
Awni
,
Z.
Song
,
F. A.
Chowdhury
,
X.
Liu
,
H.
Hajibabaei
,
W.
Shi
,
Y.
Xiao
,
I. A.
Navid
,
A.
Pandey
,
R.
Chen
,
G. A.
Botton
,
T. W.
Hamann
,
D.
Wang
,
Y.
Yan
, and
Z.
Mi
,
ACS Energy Lett.
5
,
3741
(
2020
).
25.
L.
Ravi
,
K.
Boopathi
,
P.
Panigrahi
, and
B.
Krishnan
,
Appl. Surf. Sci.
449
,
213
(
2018
).
26.
N.
Anbarasan
,
S.
Sadhasivam
,
M.
Mukilan
, and
K.
Jeganathan
,
Nanotechnology
31
,
425405
(
2020
).
27.
P.
Sahoo
,
S.
Dhara
,
S.
Amirthapandian
,
M.
Kamruddin
,
S.
Dash
,
B. K.
Panigrahi
, and
A. K.
Tyagi
,
Cryst. Growth Des.
12
,
2375
(
2012
).
28.
P.
Sahoo
,
S.
Dhara
,
S.
Dash
,
S.
Amirthapandian
,
A. K.
Prasad
, and
A. K.
Tyagi
,
Int. J. Hydrogen Energy
38
,
3513
(
2013
).
29.
P.
Sahoo
,
S.
Dhara
,
S.
Amirthapandian
, and
M.
Kamruddin
,
J. Mater. Chem. C
1
,
7237
(
2013
).
30.
P.
Sahoo
,
J.
Basu
,
S.
Dhara
,
H. C.
Fang
,
C.-P.
Liu
,
T. R.
Ravindran
,
S.
Dash
, and
A. K.
Tyagi
,
J. Mater. Sci.
47
,
3447
(
2012
).
31.
J.
Lin
,
W.
Wang
, and
G.
Li
,
Adv. Funct. Mater.
30
,
2005677
(
2020
).
32.
F. K.
Yam
and
Z.
Hassan
,
Superlattices Microstruct.
43
(
1
),
1–23
(
2008
).
33.
S.
Chu
,
S.
Vanka
,
Y.
Wang
,
J.
Gim
,
Y.
Wang
,
Y.-H.
Ra
,
R.
Hovden
,
H.
Guo
,
I.
Shih
, and
Z.
Mi
,
ACS Energy Lett.
3
,
307
(
2018
).
34.
H.
Zhang
,
M.
Ebaid
,
J.-W.
Min
,
T. K.
Ng
, and
B. S.
Ooi
,
J. Appl. Phys.
124
,
083105
(
2018
).
35.
M.
Ebaid
,
J.-W.
Min
,
C.
Zhao
,
T. K.
Ng
,
H.
Idriss
, and
B. S.
Ooi
,
J. Mater. Chem. A
6
,
6922
(
2018
).
36.
Y.
Wang
,
Y.
Wu
,
J.
Schwartz
,
S. H.
Sung
,
R.
Hovden
, and
Z.
Mi
,
Joule
3
,
2444
(
2019
).
37.
C.
Pendyala
,
J. B.
Jasinski
,
J. H.
Kim
,
V. K.
Vendra
,
S.
Lisenkov
,
M.
Menon
, and
M. K.
Sunkara
,
Nanoscale
4
,
6269
(
2012
).
38.
P. S.
Venkatesh
,
G.
Paulraj
,
P.
Dharmaraj
,
V.
Purushothaman
, and
K.
Jeganathan
,
Ionics
26
,
3465
(
2020
).
39.
J.
Lin
,
Y.
Yu
,
Z.
Zhang
,
F.
Gao
,
S.
Liu
,
W.
Wang
, and
G.
Li
,
Adv. Funct. Mater.
30
,
1910479
(
2020
).
40.
R.
Yuan
,
Q.
Luo
,
Z.
Zhang
,
Y.
Zheng
,
D.
Feng
,
D.
Wang
, and
Y.-L.
Hu
,
CrystEngComm
23
,
2469
(
2021
).
41.
H.
Zhang
,
J.-W.
Min
,
P.
Gnanasekar
,
T. K.
Ng
, and
B. S.
Ooi
,
J. Appl. Phys.
129
,
121103
(
2021
).
You do not currently have access to this content.