Threshold switching (TS) devices are finding increasing use in the hardware implementation of neuromorphic network computing. Here, a simple structured Ag/amorphous Si/Pt TS device with a switching ratio of ∼105 is prepared, with turn-on and turn-off speeds as high as ∼20 ns and ∼16 ns, respectively. We use this TS device to construct a leaky integration-and-firing artificial neuron that emulates key biological neuron features like threshold-driven firing, all-or-nothing spiking, refractory period, intensity-modulated frequency response, and conductance-modulated frequency response. These results suggest that Si film-based TS device artificial neurons have significant potential for building high-speed artificial neural networks.

1.
W.
Maass
,
Neural networks
10
,
1659
1671
(
1997
).
2.
S.
Ghosh-Dastidar
and
H.
Adeli
,
Int. J. Neural Syst.
19
,
295
308
(
2009
).
3.
G.
Indiveri
,
B.
Linares-Barranco
,
T. J.
Hamilton
,
A.
Van Schaik
,
R.
Etienne-Cummings
,
T.
Delbruck
,
S.-C.
Liu
,
P.
Dudek
,
P.
Häfliger
, and
S.
Renaud
,
Front. Neurosci.
5
,
73
(
2011
).
4.
P. A.
Merolla
,
J. V.
Arthur
,
R.
Alvarez-Icaza
,
A. S.
Cassidy
,
J.
Sawada
,
F.
Akopyan
,
B. L.
Jackson
,
N.
Imam
,
C.
Guo
, and
Y.
Nakamura
,
Science
345
(
6197
),
668
673
(
2014
).
5.
T.
Tuma
,
A.
Pantazi
,
M. L.
Gallo
,
A.
Sebastian
, and
E.
Eleftheriou
,
Nat. Nanotechnol.
11
,
693
(
2016
).
6.
J.-Y.
Mao
,
Z.
Zheng
,
Z.-Y.
Xiong
,
P.
Huang
,
G.-L.
Ding
,
R.
Wang
,
Z.-P.
Wang
,
J.-Q.
Yang
,
Y.
Zhou
,
T.
Zhai
, and
S. T.
Han
,
Nano Energy
71
,
104616
(
2020
).
7.
M.
Lee
,
S. W.
Cho
,
S. J.
Kim
,
J. Y.
Kwak
,
H.
Ju
,
Y.
Yi
,
B.-k.
Cheong
, and
S.
Lee
,
Phys. Rev. Appl.
13
,
064056
(
2020
).
8.
M. D.
Pickett
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
,
Nat. Mater.
12
,
114
117
(
2013
).
9.
X.
Zhang
,
Y.
Zhuo
,
Q.
Luo
,
Z.
Wu
,
R.
Midya
,
Z.
Wang
,
W.
Song
,
R.
Wang
,
N. K.
Upadhyay
, and
Y.
Fang
,
Nat. Commun.
11
,
51
(
2020
).
10.
B.
Dang
,
K.
Liu
,
J.
Zhu
,
L.
Xu
,
T.
Zhang
,
C.
Cheng
,
H.
Wang
,
Y.
Yang
,
Y.
Hao
, and
R.
Huang
,
APL Mater.
7
,
071114
(
2019
).
11.
K.
Wang
,
Q.
Hu
,
B.
Gao
,
Q.
Lin
,
F.-W.
Zhuge
,
D.-Y.
Zhang
,
L.
Wang
,
Y.-H.
He
,
R. H.
Scheicher
, and
H.
Tong
,
Mater. Horizon
8
,
619
629
(
2021
).
12.
J.
Wang
,
Z.
Lv
,
X.
Xing
,
X.
Li
,
Y.
Wang
,
M.
Chen
,
G.
Pang
,
F.
Qian
,
Y.
Zhou
, and
S. T.
Han
,
Adv. Funct. Mater.
30
,
1909114
(
2020
).
13.
H.
Kalita
,
A.
Krishnaprasad
,
N.
Choudhary
,
S.
Das
,
D.
Dev
,
Y.
Ding
,
L.
Tetard
,
H.-S.
Chung
,
Y.
Jung
, and
T.
Roy
,
Sci. Rep.
9
,
53
(
2019
).
14.
D.
Dev
,
A.
Krishnaprasad
,
M. S.
Shawkat
,
Z.
He
,
S.
Das
,
D.
Fan
,
H.-S.
Chung
,
Y.
Jung
, and
T.
Roy
,
IEEE Electron Device Lett.
41
,
936
939
(
2020
).
15.
M. L.
Hines
and
N. T.
Carnevale
,
Neuroscientist
7
,
123
135
(
2001
).
16.
A.
Serb
,
J.
Bill
,
A.
Khiat
,
R.
Berdan
,
R.
Legenstein
, and
T.
Prodromakis
,
Nat. Commun.
7
,
12611
(
2016
).
17.
B.
Naundorf
,
F.
Wolf
, and
M.
Volgushev
,
Nature
440
,
1060
1063
(
2006
).
18.
T.
Liu
,
M.
Verma
,
Y.
Kang
, and
M.
Orlowski
,
Appl. Phys. Lett.
101
,
073510
(
2012
).
19.
W.
Chen
,
H.
Barnaby
, and
M.
Kozicki
,
IEEE Electron Device Lett.
37
,
580
583
(
2016
).
20.
A.
Bricalli
,
E.
Ambrosi
,
M.
Laudato
,
M.
Maestro
,
R.
Rodriguez
, and
D.
Ielmini
,
IEEE Trans. Electron Devices
65
,
122
128
(
2018
).
21.
N.
Shukla
,
B.
Grisafe
,
R.
Ghosh
,
N.
Jao
,
A.
Aziz
,
J.
Frougier
,
M.
Jerry
,
S.
Sonde
,
S.
Rouvimov
, and
T.
Orlova
, in
2016 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2016
), pp.
34.6. 1
34.6. 4
.
22.
R.
Midya
,
Z.
Wang
,
J.
Zhang
,
S. E.
Savel'ev
,
C.
Li
,
M.
Rao
,
M. H.
Jang
,
S.
Joshi
,
H.
Jiang
, and
P.
Lin
,
Adv. Mater.
29
,
1604457
(
2017
).
23.
Y.-F.
Lu
,
Y.
Li
,
H.
Li
,
T.-Q.
Wan
,
X.
Huang
,
Y.-H.
He
, and
X.
Miao
,
IEEE Electron Device Lett.
41
,
1245
1248
(
2020
).
24.
R.
Ge
,
X.
Wu
,
M.
Kim
,
J.
Shi
,
S.
Sonde
,
L.
Tao
,
Y.
Zhang
,
J. C.
Lee
, and
D.
Akinwande
,
Nano Lett.
18
,
434
441
(
2018
).
25.
A.
Bid
,
A.
Bora
, and
A.
Raychaudhuri
,
Phys. Rev. B
74
,
035426
(
2006
).
26.
H. Y.
Frank
and
W. A.
Catterall
,
Genome Biol.
4
,
237
237
(
2003
).
27.
H.
Sun
,
Q.
Liu
,
C.
Li
,
S.
Long
,
H.
Lv
,
C.
Bi
,
Z.
Huo
,
L.
Li
, and
M.
Liu
,
Adv. Funct. Mater.
24
,
5679
5686
(
2014
).
28.
J.
Yoo
,
J.
Woo
,
J.
Song
, and
H.
Hwang
,
AIP Adv.
5
,
127221
(
2015
).
29.
Y.
Zhang
,
W.
He
,
Y.
Wu
,
K.
Huang
,
Y.
Shen
,
J.
Su
,
Y.
Wang
,
Z.
Zhang
,
X.
Ji
, and
G.
Li
,
Small
14
,
1802188
(
2018
).
30.
R.
Midya
,
Z.
Wang
,
S.
Asapu
,
S.
Joshi
,
Y.
Li
,
Y.
Zhuo
,
W.
Song
,
H.
Jiang
,
N.
Upadhay
, and
M.
Rao
,
Adv. Electron. Mater.
5
,
1900060
(
2019
).
31.
X.
Zhang
,
W.
Wang
,
Q.
Liu
,
X.
Zhao
,
J.
Wei
,
R.
Cao
,
Z.
Yao
,
X.
Zhu
,
F.
Zhang
, and
H.
Lv
,
IEEE Electron Device Lett.
39
,
308
311
(
2018
).
32.
A.
Citri
and
R. C.
Malenka
,
Neuropsychopharmacology
33
,
18
41
(
2008
).
33.
X.
Yan
,
Y.
Pei
,
H.
Chen
,
J.
Zhao
,
Z.
Zhou
,
H.
Wang
,
L.
Zhang
,
J.
Wang
,
X.
Li
, and
C.
Qin
,
Adv. Mater.
31
,
1805284
(
2019
).
34.
Z.
Wang
,
S.
Joshi
,
S.
Savel'Ev
,
H.
Jiang
,
R.
Midya
,
P.
Lin
,
M.
Hu
,
N.
Ge
,
J. P.
Strachan
, and
Z.
Li
,
Nat. Mater.
16
,
101
108
(
2017
).
35.
X.
Yan
,
Q.
Zhao
,
A. P.
Chen
,
J.
Zhao
,
Z.
Zhou
,
J.
Wang
,
H.
Wang
,
L.
Zhang
,
X.
Li
, and
Z.
Xiao
,
Small
15
,
1901423
(
2019
).

Supplementary Material

You do not currently have access to this content.