This work investigates the role of threading dislocation densities (TDD) in the low density regime on the vertical transport in Si0.06Ge0.94 heterostructures integrated on Si(001). The use of unintentionally doped Si0.06Ge0.94 layers enables the study of the impact of grown-in threading dislocations (TD) without interaction with processing-induced defects originating, e.g., from dopant implantation. The studied heterolayers, while equal in composition, the degree of strain relaxation, and the thickness feature three different values for the TDD as 3 × 106, 9 × 106, and 2 × 107 cm−2. Current–voltage measurements reveal that leakage currents do not scale linearly with TDD. The temperature dependence of the leakage currents suggests a strong contribution of field-enhanced carrier generation to the current transport with the trap-assisted tunneling via TD-induced defect states identified as the dominant transport mechanism at room temperature. At lower temperatures and at high electric fields, direct band-to-band tunneling without direct interactions with defect levels becomes the dominating type of transport. Leakage currents related to emission from mid-gap traps by the Shockley–Read–Hall (SRH) generation are observed at higher temperatures (>100 °C). Here, we see a reduced contribution coming from SRH in our material, featuring the minimal TDD (3 × 106 cm−2), which we attribute to a reduction in point defect clusters trapped in the TD strain fields.

1.
D. P.
Brunco
,
B.
De Jaeger
,
G.
Eneman
,
J.
Mitard
,
G.
Hellings
,
A.
Satta
,
V.
Terzieva
,
L.
Souriau
,
F. E.
Leys
,
G.
Pourtois
,
M.
Houssa
,
G.
Winderickx
,
E.
Vrancken
,
S.
Sioncke
,
K.
Opsomer
,
G.
Nicholas
,
M.
Caymax
,
A.
Stesmans
,
J.
Van Steenbergen
,
P. W.
Mertens
,
M.
Meuris
, and
M. M.
Heyns
,
J. Electrochem. Soc.
155
,
H552
(
2008
).
2.
F. T.
Armand Pilon
,
A.
Lyasota
,
Y.-M.
Niquet
,
V.
Reboud
,
V.
Calvo
,
N.
Pauc
,
J.
Widiez
,
C.
Bonzon
,
J. M.
Hartmann
,
A.
Chelnokov
,
J.
Faist
, and
H.
Sigg
,
Nat. Commun.
10
,
2724
(
2019
).
3.
M.
de Cea
,
D.
van Orden
,
J.
Fini
,
M.
Wade
, and
R. J.
Ram
,
APL Photonics
6
,
041302
(
2021
).
4.
T.
Grange
,
D.
Stark
,
G.
Scalari
,
J.
Faist
,
L.
Persichetti
,
L.
Di Gaspare
,
M.
de Seta
,
M.
Ortolani
,
D. J.
Paul
,
G.
Capellini
,
S.
Birner
, and
M.
Virgilio
,
Appl. Phys. Lett.
114
,
111102
(
2019
).
5.
F.
Bottegoni
,
M.
Celebrano
,
M.
Bollani
,
P.
Biagioni
,
G.
Isella
,
F.
Ciccacci
, and
M.
Finazzi
,
Nat. Mater.
13
,
790
(
2014
).
6.
A.
Sammak
,
D.
Sabbagh
,
N. W.
Hendrickx
,
M.
Lodari
,
B.
Paquelet Wuetz
,
A.
Tosato
,
L.
Yeoh
,
M.
Bollani
,
M.
Virgilio
,
M. A.
Schubert
,
P.
Zaumseil
,
G.
Capellini
,
M.
Veldhorst
, and
G.
Scappucci
,
Adv. Funct. Mater.
29
,
1807613
(
2019
).
7.
G.
Capellini
,
M.
de Seta
,
Y.
Busby
,
M.
Pea
,
F.
Evangelisti
,
G.
Nicotra
,
C.
Spinella
,
M.
Nardone
, and
C.
Ferrari
,
J. Appl. Phys.
107
,
063504
(
2010
).
8.
V. A.
Shah
,
A.
Dobbie
,
M.
Myronov
, and
D. R.
Leadley
,
J. Appl. Phys.
107
,
064304
(
2010
).
9.
C.
Claeys
and
E.
Simoen
,
Fundamental and Technological Aspects of Extended Defects in Germanium
(
Springer
,
2009
).
10.
E.
Simoen
, in
High Mobility Materials for CMOS Applications
, edited by
N.
Collaert
(
Elsevier
,
2018
), p.
159
.
11.
C.
Claeys
,
E.
Simoen
,
G.
Eneman
,
K.
Ni
,
A.
Hikavyy
,
R.
Loo
,
S.
Gupta
,
C.
Merckling
,
A.
Alian
, and
M.
Caymax
,
ECS J. Solid State Sci. Technol.
5
,
P3149
P3165
(
2016
).
12.
E.
Simoen
,
G.
Brouwers
,
R.
Yang
,
G.
Eneman
,
M. B.
Gonzalez
,
F.
Leys
,
B.
de Jaeger
,
J.
Mitard
,
D.
Brunco
,
L.
Souriau
,
N.
Cody
,
S.
Thomas
,
L.
Lajaunie
,
M.-L.
David
, and
M.
Meuris
,
Phys. Status Solidi (c)
6
,
1912
(
2009
).
13.
E.
Simoen
,
G.
Eneman
,
G.
Wang
,
L.
Souriau
,
R.
Loo
,
M.
Caymax
, and
C.
Claeys
,
J. Electrochem. Soc.
157
,
R1
(
2010
).
14.
E.
Simoen
,
B.
Hsu
,
G.
Eneman
,
E.
Rosseel
,
R.
Loo
,
H.
Arimura
,
N.
Horiguchi
,
W.-C.
Wen
,
H.
Nakashima
,
C.
Claeys
,
A.
Oliveira
,
P.
Agopian
, and
J.
Martino
, “
Device-based threading dislocation assessment in germanium hetero-epitaxy
,” in
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)
(
2019
).
15.
E.
Simoen
,
C.
Claeys
, and
J.
Vanhellemont
,
Defect Diffusion Forum
261–262
,
1
(
2007
).
16.
O.
Skibitzki
,
M. H.
Zoellner
,
F.
Rovaris
,
M. A.
Schubert
,
Y.
Yamamoto
,
L.
Persichetti
,
L.
Di Gaspare
,
M.
de Seta
,
R.
Gatti
,
F.
Montalenti
, and
G.
Capellini
,
Phys. Rev. Mater.
4
,
103403
(
2020
).
17.
C.
Ciano
,
M.
Virgilio
,
M.
Montanari
,
L.
Persichetti
,
L.
Di Gaspare
,
M.
Ortolani
,
L.
Baldassarre
,
M. H.
Zoellner
,
O.
Skibitzki
,
G.
Scalari
,
J.
Faist
,
D. J.
Paul
,
M.
Scuderi
,
G.
Nicotra
,
T.
Grange
,
S.
Birner
,
G.
Capellini
, and
M.
de Seta
,
Phys. Rev. Appl.
11
,
014003
(
2019
).
18.
M. M.
Mirza
,
H.
Zhou
,
P.
Velha
,
X.
Li
,
K. E.
Docherty
,
A.
Samarelli
,
G.
Ternent
, and
D. J.
Paul
,
J. Vac. Sci. Technol. B
30
,
06FF02
(
2012
).
19.
K.
Gallacher
,
P.
Velha
,
D. J.
Paul
,
I.
MacLaren
,
M.
Myronov
, and
D. R.
Leadley
,
Appl. Phys. Lett.
100
,
022113
(
2012
).
20.
P. N.
Grillot
,
S. A.
Ringel
,
J.
Michel
, and
E. A.
Fitzgerald
,
J. Appl. Phys.
80
,
2823
(
1996
).
21.
N.
Hirashita
,
Y.
Moriyama
,
S.
Nakaharai
,
T.
Irisawa
,
N.
Sugiyama
, and
S.-I.
Takagi
,
Appl. Phys. Express
1
,
101401
(
2008
).
22.
S.
Gupta
,
E.
Simoen
,
R.
Loo
,
Y.
Shimura
,
C.
Porret
,
F.
Gencarelli
,
K.
Paredis
,
H.
Bender
,
J.
Lauwaert
,
H.
Vrielinck
, and
M.
Heyns
,
Appl. Phys. Lett.
113
,
022102
(
2018
).
23.
24.
A.
Czerwinski
,
E.
Simoen
,
C.
Claeys
,
K.
KIimaf
,
D.
Tomaszewski
,
J.
Gibki
, and
J.
Katckia
,
J. Electrochem. Soc.
145
,
2107
(
1998
).
25.
E. G.
Rolseth
,
A.
Blech
,
I. A.
Fischer
,
Y.
Hashad
,
R.
Koerner
,
K.
Kostecki
,
A.
Kruglov
,
V. S.
Senthil Srinivasan
,
M.
Weiser
,
T.
Wendav
,
K.
Busch
, and
J.
Schulze
, in
IEEE Conference on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
(
IEEE
,
2017
), p.
57
.
26.
L. M.
Giovane
,
H.-C.
Luan
,
A. M.
Agarwal
, and
L. C.
Kimerling
,
Appl. Phys. Lett.
78
,
541
(
2001
).
27.
G.
Eneman
,
E.
Simoen
,
R.
Delhougne
,
P.
Verheyen
,
R.
Loo
, and
K.
de Meyer
,
Appl. Phys. Lett.
87
,
192112
(
2005
).
28.
M. B.
Gonzalez
,
E.
Simoen
,
G.
Eneman
,
B.
de Jaeger
,
G.
Wang
,
R.
Loo
, and
C.
Claeys
,
Microelectron. Eng.
125
,
33
(
2014
).
29.
W.
Shockley
and
W. T.
Read
, Jr.
,
Phys. Rev.
87
,
835
(
1952
).
30.
C.-T.
Sah
,
R.
Noyce
, and
W.
Shockley
,
Proc. IRE
45
,
1228
(
1957
).
31.
E.
Simoen
,
G.
Eneman
,
M.
Bargallo-Gonzalez
,
D.
Kobayashi
,
A.
Luque Rodriguez
,
J.-A. J.
Tejada
, and
C.
Claeys
,
ECS Trans.
31
,
307
(
2019
).
32.
E.
Simoen
,
G.
Eneman
,
M.
Bargallo Gonzalez
,
D.
Kobayashi
,
A.
Luque Rodrı´guez
,
J.-A.
Jiménez Tejada
, and
C.
Claeys
,
J. Electrochem. Soc.
158
,
R27
R36
(
2011
).
33.
Y.
Murakami
and
T.
Shingyouji
,
J. Appl. Phys.
75
,
3548
(
1994
).
34.
A.
Poyai
,
E.
Simoen
, and
C.
Claeys
,
IEEE Trans. Electron Devices
48
,
2445
(
2001
).
35.
G. A. M.
Hurkx
,
D. B. M.
Klaassen
, and
M. P. G.
Knuvers
,
IEEE Trans. Electron Devices
39
,
331
(
1992
).
36.
K.-W.
Ang
,
J. W.
Ng
,
G.-Q.
Lo
, and
D.-L.
Kwong
,
Appl. Phys. Lett.
94
,
223515
(
2009
).
37.
G.
Eneman
,
M.
Wiot
,
A.
Brugere
,
O. S. I.
Casain
,
S.
Sonde
,
D. P.
Brunco
,
B.
de Jaeger
,
A.
Satta
,
G.
Hellings
,
K.
de Meyer
,
C.
Claeys
,
M.
Meuris
,
M. M.
Heyns
, and
E.
Simoen
,
IEEE Trans. Electron Devices
55
,
2287
(
2008
).
38.
M. B.
Gonzalez
,
E.
Simoen
,
B.
Vissouvanadin
,
G.
Eneman
,
P.
Verheyen
,
R.
Loo
, and
C.
Claeys
,
Appl. Phys. Lett.
94
,
233507
(
2009
).
39.
M. B.
Gonzalez
,
G.
Eneman
,
G.
Wang
,
B.
De Jaeger
,
E.
Simoen
, and
C.
Claeys
,
J. Electrochem. Soc.
158
,
H955
H960
(
2011
).
40.
K.
Schmalz
,
F.-G.
Kirscht
, and
K.
Tittelbach-Helmrich
,
Phys. Status Solidi (a)
109
,
279
(
1988
).
41.
C.
Claeys
,
E.
Simoen
, and
J.
Vanhellemont
,
J. Phys. III France
7
,
1469
(
1997
).
You do not currently have access to this content.