AgSbS2 is a promising absorber material for photovoltaic cells because of its optimum bandgap, strong optical absorption, and excellent stability. Here, we report a spin-coating and annealing approach for the fabrication of AgSbS2 solar cells, where Ag-Sb-thiourea complex solution was prepared as the precursor solution. We identified that the annealing temperature crucially affected the phase composition, crystallinity, and surface morphology of the AgSbS2 film. We also probed the electronic structures and established a FTO/TiO2/AgSbS2/Spiro-OMeTAD/Au device structure. This device finally achieved an encouraging power conversion efficiency of 2.25%, which is highest efficiency in AgSbS2 solar cells. Our research opens up another prospect for pursuing high performance AgSbS2 thin film solar cells by adopting a solution processing method and planar heterojunction device structure.

1.
R.
Tang
,
X.
Wang
,
W.
Lian
,
J.
Huang
,
Q.
Wei
,
M.
Huang
,
Y.
Yin
,
C.
Jiang
,
S.
Yang
,
G.
Xing
,
S.
Chen
,
C.
Zhu
,
X.
Hao
,
M. A.
Green
, and
T.
Chen
,
Nat. Energy
5
,
587
(
2020
).
2.
M.
Zhang
,
Y.
Liu
,
B.
Yang
,
X.
Lin
,
Y.
Lu
,
J.
Zheng
,
C.
Chen
, and
J.
Tang
,
ACS Appl. Mater. Interface
13
(
11
),
13273
(
2021
).
3.
W.
Han
,
D.
Gao
,
R.
Tang
,
Y.
Ma
,
C.
Jiang
,
G.
Li
,
T.
Chen
, and
C.
Zhu
,
Sol. RRL
5
(
3
),
2000750
(
2021
).
4.
Y.-R.
Ho
and
M.-W.
Lee
,
Electrochem. Commun.
26
,
48
(
2013
).
5.
J.
Capistrán-Martínez
and
P. K.
Nair
,
Phys. Status Solidi A
212
(
12
),
2869
(
2015
).
6.
S.
Berri
,
D.
Maouche
,
N.
Bouarissa
, and
Y.
Medkour
,
Mater. Sci. Semicond. Process.
16
(
6
),
1439
(
2013
).
7.
W.-C.
Yang
and
M.-W.
Lee
,
J. Electrochem. Soc.
161
(
3
),
H92
(
2014
).
8.
X.
Wang
,
J.
Li
,
W.
Liu
,
S.
Yang
,
C.
Zhu
, and
T.
Chen
,
Nanoscale
9
(
10
),
3386
(
2017
).
9.
L.
Zhang
,
C.
Wu
,
W.
Liu
,
S.
Yang
,
M.
Wang
,
T.
Chen
, and
C.
Zhu
,
J. Mater. Chem. A
6
(
43
),
21320
(
2018
).
10.
A.
Parameswaran Sreekala
,
A.
Nadukkandy
,
S.
Shaji
,
D. A.
Avellaneda
,
J. A.
Aguilar-Martínez
, and
B.
Krishnan
,
Mater. Today Commun.
27
,
102362
(
2021
).
11.
D. H.
Kim
,
S. J.
Lee
,
M. S.
Park
,
J. K.
Kang
,
J. H.
Heo
,
S. H.
Im
, and
S. J.
Sung
,
Nanoscale
6
(
23
),
14549
(
2014
).
12.
C.
Wu
,
W.
Lian
,
L.
Zhang
,
H.
Ding
,
C.
Jiang
,
Y.
Ma
,
W.
Han
,
Y.
Li
,
J.
Zhu
,
T.
Chen
, and
C.
Zhu
,
Sol. RRL
4
(
5
),
1900582
(
2020
).
13.
T.
Hwang
,
B.
Lee
,
J.
Kim
,
S.
Lee
,
B.
Gil
,
A. J.
Yun
, and
B.
Park
,
Adv. Mater.
30
(
42
),
e1704208
(
2018
).
14.
M.
Jung
,
S. G.
Ji
,
G.
Kim
, and
S. I.
Seok
,
Chem. Soc. Rev.
48
(
7
),
2011
(
2019
).
15.
Y. C.
Zheng
,
S.
Yang
,
X.
Chen
,
Y.
Chen
,
Y.
Hou
, and
H. G.
Yang
,
Chem. Mater.
27
(
14
),
5116
(
2015
).
16.
D.
Bi
,
C.
Yi
,
J.
Luo
,
J.-D.
Décoppet
,
F.
Zhang
,
S. M.
Zakeeruddin
,
X.
Li
,
A.
Hagfeldt
, and
M.
Grätzel
,
Nat. Energy
1
(
10
),
16142
(
2016
).
17.
M. F.
Pervez
,
M. N. H.
Mia
,
S.
Hossain
,
S. M. K.
Saha
,
M. H.
Ali
,
P.
Sarker
,
M. K.
Hossain
,
M. A.
Matin
,
M.
Hoq
, and
M. A. M.
Chowdhury
,
Optik
162
,
140
(
2018
).
18.
M.
Yoshinaga
,
K.
Yamamoto
,
N.
Sato
,
K.
Aoki
,
T.
Morikawa
, and
A.
Muramatsu
,
Appl. Catal. B
87
(
3–4
),
239
(
2009
).
19.
J.
Kaur
,
A.
Parmar
,
S. K.
Tripathi
, and
N.
Goyal
,
Mater. Res. Express
6
(
4
),
046417
(
2019
).
20.
A.
Bouhdjer
,
A.
Attaf
,
H.
Saidi
,
Y.
Benkhetta
,
M. S.
Aida
,
I.
Bouhaf
, and
A.
Rhil
,
Optik
127
(
16
),
6329
(
2016
).
21.
A.
Bouhdjer
,
A.
Attaf
,
H.
Saidi
,
H.
Bendjedidi
,
Y.
Benkhetta
, and
I.
Bouhaf
,
J. Semicond.
36
(
8
),
082002
(
2015
).
22.
R.
Kondrotas
,
C.
Chen
, and
J.
Tang
,
Joule
2
(
5
),
857
(
2018
).
23.
A.
De Vos
,
J. Phys. D: Appl. Phys.
13
,
839
(
1980
).
24.
C.
Jiang
,
J.
Zhou
,
R.
Tang
,
W.
Lian
,
X.
Wang
,
X.
Lei
,
H.
Zeng
,
C.
Zhu
,
W.
Tang
, and
T.
Chen
,
Energy Environ. Sci.
14
(
1
),
359
(
2021
).
25.
C.
Wu
,
L.
Zhang
,
H.
Ding
,
H.
Ju
,
X.
Jin
,
X.
Wang
,
C.
Zhu
, and
T.
Chen
,
Sol. Energy Mater. Sol. Cells
183
,
52
(
2018
).
26.
A.
Abdolahzadeh Ziabari
,
N.
Mohabbati Zindanlou
,
J.
Hassanzadeh
,
S.
Golshahi
, and
A.
Bagheri Khatibani
,
J. Alloys Compd.
842
,
155741
(
2020
).
27.
S.
Royanian
,
A.
Abdolahzadeh Ziabari
, and
R.
Yousefi
,
Plasmonics
15
(
4
),
1173
(
2020
).
28.
L.
Guo
,
Y.
Zhu
,
O.
Gunawan
,
T.
Gokmen
,
V. R.
Deline
,
S.
Ahmed
,
L. T.
Romankiw
, and
H.
Deligianni
,
Prog. Photovoltaics: Res. Appl.
22
(
1
),
58
(
2014
).
29.
W.
Ke
,
C. C.
Stoumpos
,
I.
Spanopoulos
,
M.
Chen
,
M. R.
Wasielewski
, and
M. G.
Kanatzidis
,
ACS Energy Lett.
3
(
7
),
1470
(
2018
).
30.
J.
Feng
,
X.
Zhu
,
Z.
Yang
,
X.
Zhang
,
J.
Niu
,
Z.
Wang
,
S.
Zuo
,
S.
Priya
,
S. F.
Liu
, and
D.
Yang
,
Adv. Mater
30
(
35
),
e1801418
(
2018
).
31.
B.
Wang
,
J.
Ma
,
Z.
Li
,
G.
Chen
,
Q.
Gu
,
S.
Chen
,
Y.
Zhang
,
Y.
Song
,
J.
Chen
,
X.
Pi
,
X.
Yu
, and
D.
Yang
,
Nano Res.
(published online,
2021
).

Supplementary Material

You do not currently have access to this content.