Integrated circuits are building blocks in millimeter-wave handsets and base stations, requiring nonlinear characterization to optimize performance and energy efficiency. Today's sources use digital-to-analog converters to synthesize arbitrary electrical waveforms for nonlinear characterization, but this approach demands even faster integrated circuits to increase the bandwidth to millimeter-waves. Optically derived sources are a potential path to generate precise millimeter-waves and arbitrary waveforms using additive frequency synthesis. In this work, we demonstrate optically derived millimeter-waves up to 99.2 GHz with phase and amplitude control that could be locked to an optical reference. Our approach uses a 1550 nm electro-optic frequency comb with a terahertz of bandwidth. A programmable spectral filter selects two wavelengths from the optical comb, illuminating a modified uni-traveling carrier photodiode on a coplanar waveguide. We then tune the phase and amplitude by varying the optical phase and amplitude in the programmable spectral filter. The result of our work is electro-optically derived millimeter-waves at (24.8, 49.6, 74.4, and 99.2) GHz with phase and amplitude control, enabling arbitrary repetitive waveform generation.

1.
T.
Fortier
and
E.
Baumann
, “
20 years of developments in optical frequency comb technology and applications
,”
Commun. Phys.
2
,
153
(
2019
).
2.
T.
Ishibashi
,
Y.
Muramoto
,
T.
Yoshimatsu
, and
H.
Ito
, “
Unitraveling-carrier photodiodes for terahertz applications
,”
IEEE J. Sel. Top. Quantum Electron.
20
,
3804210
(
2014
).
3.
Z.
Li
,
Y.
Fu
,
M.
Piels
,
H.
Pan
,
A.
Beling
,
J. E.
Bowers
, and
J. C.
Campbell
, “
High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode
,”
Opt. Express
19
,
B385
(
2011
).
4.
T. M.
Fortier
,
A.
Rolland
,
F.
Quinlan
,
F. N.
Baynes
,
A. J.
Metcalf
,
A.
Hati
,
A. D.
Ludlow
,
N.
Hinkley
,
M.
Shimizu
,
T.
Ishibashi
,
J. C.
Campbell
, and
S. A.
Diddams
, “
Optically referenced broadband electronic synthesizer with 15 digits of resolution
,”
Laser Photonics Rev.
10
,
780
790
(
2016
).
5.
A. M.
Weiner
, “
Manipulation of ultrashort pulses
,” in
Ultrafast Optics
(
John Wiley & Sons, Inc.
,
2009
), pp.
362
421
.
6.
V.
Torres-Company
and
A. M.
Weiner
, “
Optical frequency comb technology for ultra-broadband radio-frequency photonics
,”
Laser Photonics Rev.
8
,
368
393
(
2014
).
7.
A. J.
Metcalf
,
V.
Torres-Company
,
D. E.
Leaird
, and
A. M.
Weiner
, “
High-power broadly tunable electrooptic frequency comb generator
,”
IEEE J. Sel. Top. Quantum Electron.
19
,
3500306
(
2013
).
8.
T.
Yamamoto
,
T.
Komukai
,
K.
Suzuki
, and
A.
Takada
, “
Multicarrier light source with flattened spectrum using phase modulators and dispersion medium
,”
J. Light. Technol.
27
,
4297
4305
(
2009
).
9.
V.
Torres-Company
,
J.
Lancis
, and
P.
Andrés
, “
Lossless equalization of frequency combs
,”
Opt. Lett.
33
,
1822
(
2008
).
10.
ETSI 3rd Generation Partnership Project (3GPP)
, “
5G; NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone
,” 3GPP TS 138.101-1 version 15.3.0 (
2018
).
11.
T. S.
Rappaport
,
Y.
Xing
,
O.
Kanhere
,
S.
Ju
,
A.
Madanayake
,
S.
Mandal
,
A.
Alkhateeb
, and
G. C.
Trichopoulos
, “
Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond
,”
IEEE Access
7
,
78729
78757
(
2019
).
12.
A. M.
Weiner
, “
Ultrafast optical pulse shaping: A tutorial review
,”
Opt. Commun.
284
,
3669
3692
(
2011
).
13.
T.
Albrecht
,
J.
Martens
,
T. S.
Clement
,
P. D.
Hale
, and
D. F.
Williams
, “
Broadband characterization of optoelectronic components to 65 GHz using VNA techniques
,” in
ARFTG Conference
(
IEEE
,
2003
), pp.
53
59
.
14.
P. D.
Hale
and
D. F.
Williams
, “
Calibrated measurement of optoelectronic frequency response
,”
IEEE Trans. Microwave Theory Tech.
51
,
1422
1429
(
2003
).
15.
Anritsu Company
,
Electro-Optical Measurements using Anritsu VNAs
(
Anritsu Company
,
2020
).
16.
Anritsu Company,
O/E Calibration Module MN4765B Data Sheet
(
Anritsu Company
,
2020
).
17.
Q.
Li
,
K.
Li
,
Y.
Fu
,
X.
Xie
,
Z.
Yang
,
A.
Beling
, and
J. C.
Campbell
, “
High-power flip-chip bonded photodiode with 110 GHz bandwidth
,”
J. Light. Technol.
34
,
2139
2144
(
2016
).
18.
A.
Beling
,
X.
Xie
, and
J. C.
Campbell
, “
High-power, high-linearity photodiodes
,”
Optica
3
,
328
(
2016
).
19.
National Institute of Standards and Technology
, http://www.nist.gov/services-resources/software/wafer-calibration-software for “
NIST Microwave Uncertainty Framework
” (
2011
).
20.
J.
Verspecht
, “
Calibration of a measurement system for high frequency nonlinear devices
,” Ph.D. dissertation (Vrije Universiteit Brussel,
1995
).
21.
N. D.
Orloff
,
J.
Mateu
,
A.
Lewandowski
,
E.
Rocas
,
J.
King
,
D.
Gu
,
X.
Lu
,
C.
Collado
,
I.
Takeuchi
, and
J. C.
Booth
, “
A compact variable-temperature broadband series-resistor calibration
,”
IEEE Trans. Microwave Theory Tech.
59
,
188
195
(
2011
).
22.
D. C.
DeGroot
,
J. A.
Jargon
, and
R. B.
Marks
, “
Multiline TRL revealed
,” in
60th ARFTG Conference Digest, Fall 2002
(
IEEE
,
2002
), pp.
131
155
.
23.
R. B.
Marks
, “
A multiline method of network analyzer calibration
,”
IEEE Trans. Microwave Theory Tech.
39
,
1205
1215
(
1991
).
24.
Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Supplementary Material

You do not currently have access to this content.