We present a method for in situ temperature measurement of superconducting quantum circuits, by using the first three levels of a transmon device to which we apply a sequence of π gates. Our approach employs projective dispersive readout and utilizes the basic properties of the density matrix associated with thermal states. This method works with an averaging readout scheme and does not require a single-shot readout setup. We validate this protocol by performing thermometry in the range of 50–200 mK, corresponding to a range of residual populations 1%–20% for the first excited state and 0.02%–3% for the second excited state.
References
1.
C.
Rigetti
, J. M.
Gambetta
, S.
Poletto
, B. L. T.
Plourde
, J. M.
Chow
, A. D.
Córcoles
, J. A.
Smolin
, S. T.
Merkel
, J. R.
Rozen
, G. A.
Keefe
, M. B.
Rothwell
, M. B.
Ketchen
, and M.
Steffen
, “Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms
,” Phys. Rev. B
86
, 100506(R)
(2012
).2.
W. D.
Oliver
and P. B.
Welander
, “Materials in superconducting quantum bits
,” MRS Bull.
38
, 816
(2013
).3.
H.
Paik
, D. I.
Schuster
, L. S.
Bishop
, G.
Kirchmair
, G.
Catelani
, A. P.
Sears
, B. R.
Johnson
, M. J.
Reagor
, L.
Funzio
, L. I.
Glazman
, S. M.
Girvin
, M. H.
Devoret
, and R. J.
Schoelkopf
, “Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture
,” Phys. Rev. Lett.
107
, 240501
(2011
).4.
K.
Geerlings
, Z.
Leghtas
, I. M.
Pop
, S.
Shankar
, L.
Frunzio
, R. J.
Schoelkopf
, M.
Mirrahimi
, and M. H.
Devoret
, “Demonstrating a driven reset protocol for a superconducting qubit
,” Phys. Rev. Lett.
110
, 120501
(2013
).5.
S. O.
Valenzuela
, W. D.
Oliver
, D. M.
Berns
, K. K.
Berggren
, L. S.
Levitov
, and T. P.
Orlando
, “Microwave-induced cooling of a superconducting qubit
,” Science
314
, 1589
(2006
).6.
J.
Tuorila
, M.
Partanen
, T.
Ala-Nissila
, and M.
Möttönen
, “Efficient protocol for qubit initialization with a tunable environment
,” npj Quantum Inf.
3
, 27
(2017
).7.
D.
Ristè
, J. G.
van Leeuwen
, H.-S.
Ku
, K. W.
Lehnert
, and L.
DiCarlo
, “Initialization by measurement of a superconducting quantum bit circuit
,” Phys. Rev. Lett.
109
, 050507
(2012
).8.
D. J.
Egger
, M.
Werninghaus
, M.
Ganzhorn
, G.
Salis
, A.
Fuhrer
, P.
Müller
, and S.
Filipp
, “Pulsed reset protocol for fixed-frequency superconducting qubits
,” Phys. Rev. Appl.
10
, 044030
(2018
).9.
P.
Magnard
, P.
Kurpiers
, B.
Royer
, T.
Walter
, J.-C.
Besse
, S.
Gasparinetti
, M.
Pechal
, J.
Heinsoo
, S.
Storz
, A.
Blais
, and A.
Wallraff
, “Fast and unconditional all-microwave reset of a superconducting qubit
,” Phys. Rev. Lett.
121
, 060502
(2018
).10.
P.
Campagne-Ibarcq
, A.
Eickbusch
, S.
Touzard
, E.
Zalys-Geller
, N. E.
Frattini
, V. V.
Sivak
, P.
Reinhold
, S.
Puri
, S.
Shankar
, R. J.
Schoelkopf
, L.
Frunzio
, M.
Mirrahimi
, and M. H.
Devoret
, “Quantum error correction of a qubit encoded in grid states of an oscillator
,” Nature
584
, 368
(2020
).11.
M. D.
Reed
, L.
DiCarlo
, S. E.
Nigg
, L.
Sun
, L.
Frunzio
, S. M.
Girvin
, and R. J.
Schoelkopf
, “Realization of three qubit quantum error correction with superconducting circuits
,” Nature
482
, 382
(2012
).12.
R.
Vijay
, D. H.
Slichter
, and I.
Siddiqi
, “Observation of quantum jumps in a superconducting artificial atom
,” Phys. Rev. Lett.
106
, 110502
(2011
).13.
G.
de Lange
, D.
Ristè
, M.
Tiggelman
, C.
Eichler
, L.
Tornberg
, G.
Johansson
, A.
Wallraff
, R.
Schouten
, and L.
DiCarlo
, “Reversing quantum trajectories with analog feedback
,” Phys. Rev. Lett.
112
, 080501
(2014
).14.
Z. R.
Lin
, K.
Inomata
, W. D.
Oliver
, K.
Koshino
, Y.
Nakamura
, J. S.
Tsai
, and T.
Yamamoto
, “Single-shot readout of a superconducting flux qubit with a flux-driven Josephson parametric amplifier
,” Appl. Phys. Lett.
103
, 132602
(2013
).15.
B.
Abdo
, K.
Sliwa
, S.
Shankar
, M.
Hatridge
, L.
Frunzio
, R.
Schoelkopf
, and M.
Devoret
, “Josephson directional amplifier for quantum measurement of superconducting circuits
,” Phys. Rev. Lett.
112
, 167701
(2014
).16.
A. D.
Córcolesa
, J. M.
Chow
, J. M.
Gambetta
, C.
Rigetti
, J. R.
Rozen
, G. A.
Keefe
, M. B.
Rothwell
, M. B.
Ketchen
, and M.
Steffen
, “Protecting superconducting qubits from radiation
,” Appl. Phys. Lett.
99
, 181906
(2011
).17.
J.
Wenner
, Y.
Yin
, E.
Lucero
, R.
Barends
, Y.
Chen
, B.
Chiaro
, J.
Kelly
, M.
Lenander
, M.
Mariantoni
, A.
Megrant
, C.
Neill
, P. J. J.
O'Malley
, D.
Sank
, A.
Vainsencher
, H.
Wang
, T. C.
White
, A. N.
Cleland
, and J. M.
Martinis
, “Excitation of superconducting qubits from hot nonequilibrium quasiparticles
,” Phys. Rev. Lett.
110
, 150502
(2013
).18.
R.
Barends
, J.
Wenner
, M.
Lenander
, Y.
Chen
, R. C.
Bialczak
, J.
Kelly
, E.
Lucero
, P.
O'Malley
, M.
Mariantoni
, D.
Sank
, H.
Wang
, T. C.
White
, Y.
Yin
, J.
Zhao
, A. N.
Cleland
, J. M.
Martinis
, and J. J. A.
Baselmans
, “Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits
,” Appl. Phys. Lett.
99
, 113507
(2011
).19.
K.
Serniak
, M.
Hays
, G.
de Lange
, S.
Diamond
, S.
Shankar
, L. D.
Burkhart
, L.
Frunzio
, M.
Houzet
, and M. H.
Devoret
, “Hot non-equilibrium quasiparticles in transmon qubits
,” Phys. Rev. Lett.
121
, 157701
(2018
).20.
J. P.
Pekola
, “Towards quantum thermodynamics in electronic circuits
,” Nat. Phys.
11
, 118
(2015
).21.
M. P.
Silveri
, J. A.
Tuorila
, E. V.
Thuneberg
, and G. S.
Paraoanu
, “Quantum systems under frequency modulation
,” Rep. Prog. Phys.
80
, 056002
(2017
).22.
M.
Cattaneo
and G. S.
Paraoanu
, “Engineering dissipation with resistive elements in circuit quantum electrodynamics
,” arXiv:2103.16946 (2021
).23.
A.
Kulikov
, R.
Navarathna
, and A.
Fedorov
, “Measuring effective temperatures of qubits using correlations
,” Phys. Rev. Lett.
124
, 240501
(2020
).24.
J. E.
Johnson
, C.
Macklin
, D. H.
Slichter
, R.
Vijay
, E. B.
Weingarten
, J.
Clarke
, and I.
Siddiqi
, “Heralded state preparation in a superconducting qubit
,” Phys. Rev. Lett.
109
, 050506
(2012
).25.
D.
Ristè
, C. C.
Bultink
, K. W.
Lehnert
, and L.
DiCarlo
, “Feedback control of a solid-state qubit using high-fidelity projective measurement
,” Phys. Rev. Lett.
109
, 240502
(2012
).26.
P.
Krantz
, A.
Bengtsson
, M.
Simoen
, S.
Gustavsson
, V.
Shumeiko
, W. D.
Oliver
, C. M.
Wilson
, P.
Delsing
, and J.
Bylander
, “Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator
,” Nat. Commun.
7
, 11417
(2016
).27.
X. Y.
Jin
, A.
Kamal
, A. P.
Sears
, T.
Gudmundsen
, D.
Hover
, J.
Miloshi
, R.
Slattery
, F.
Yan
, J.
Yoder
, T. P.
Orlando
, S.
Gustavsson
, and W. D.
Oliver
, “Thermal and residual excited-state population in a 3D transmon qubit
,” Phys. Rev. Lett.
114
, 240501
(2015
).28.
M.
Scigliuzzo
, A.
Bengtsson
, J.-C.
Besse
, A.
Wallraff
, P.
Delsing
, and S.
Gasparinetti
, “Primary thermometry of propagating microwaves in the quantum regime
,” Phys. Rev. X
10
, 041054
(2020
).29.
R.
Bianchetti
, S.
Filipp
, M.
Baur
, J. M.
Fink
, C.
Lang
, L.
Steffen
, M.
Boissonneault
, A.
Blais
, and A.
Wallraff
, “Control and tomography of a three level superconducting artificial atom
,” Phys. Rev. Lett.
105
, 223601
(2010
).30.
31.
A. A.
Clerk
, M. H.
Devoret
, S. M.
Girvin
, F.
Marquardt
, and R. J.
Schoelkopf
, “Introduction to quantum noise, measurement, and amplification
,” Rev. Mod. Phys.
82
, 1155
(2010
).32.
B.
Karimi
and J. P.
Pekola
, “Otto refrigerator based on a superconducting qubit: Classical and quantum performance
,” Phys. Rev. B
94
, 184503
(2016
).33.
S. H.
Raja
, S.
Maniscalco
, G. S.
Paraoanu
, J. P.
Pekola
, and N. L.
Gullo
, “Finite-time quantum Stirling heat engine
,” New J. Phys.
23
, 033034
(2021
).34.
S.
Krinner
, S.
Storz
, P.
Kurpiers
, P.
Magnard
, J.
Heinsoo
, R.
Keller
, J.
Lutolf
, C.
Eichler
, and A.
Wallraff
, “Engineering cryogenic setups for 100-qubit scale superconducting circuit systems
,” EPJ Quantum Technol.
6
, 2
(2019
).35.
L.
Grünhaupt
, N.
Maleeva
, S. T.
Skacel
, M.
Calvo
, F.
Levy-Bertrand
, A. V.
Ustinov
, H.
Rotzinger
, A.
Monfardini
, G.
Catelani
, and I. M.
Pop
, “Loss mechanisms and quasiparticle dynamics in superconducting microwave resonators made of thin-film granular aluminum
,” Phys. Rev. Lett.
121
, 117001
(2018
).36.
D.
Ristè
, C. C.
Bultink
, M. J.
Tiggelman
, R. N.
Schouten
, K. W.
Lehnert
, and L.
DiCarlo
, “Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit
,” Nat. Commun.
4
, 1913
(2013
).37.
S.
Schlör
, J.
Lisenfeld
, C.
Müller
, A.
Bilmes
, A.
Schneider
, D. P.
Pappas
, A. V.
Ustinov
, and M.
Weides
, “Correlating decoherence in transmon qubits: Low frequency noise by single fluctuators
,” Phys. Rev. Lett.
123
, 190502
(2019
).38.
J. J.
Burnett
, A.
Bengtsson
, M.
Scigliuzzo
, D.
Niepce
, M.
Kudra
, P.
Delsing
, and J.
Bylander
, “Decoherence benchmarking of superconducting qubits
,” npj Quantum Inf.
5
, 54
(2019
).39.
C. R. H.
McRae
, G. M.
Stiehl
, H.
Wang
, S.-X.
Lin
, S. A.
Caldwell
, D. P.
Pappas
, J.
Mutus
, and J.
Combes
, “Reproducible coherence characterization of superconducting quantum devices
,” Appl. Phys. Lett.
119
, 100501
(2021
).40.
G.
Catelani
, J.
Koch
, L.
Frunzio
, R. J.
Schoelkopf
, M. H.
Devoret
, and L. I.
Glazman
, “Quasiparticle relaxation of superconducting qubits in the presence of flux
,” Phys. Rev. Lett.
106
, 077002
(2011
).41.
J. M.
Martinis
, M.
Ansmannand
, and J.
Aumentado
, “Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations
,” Phys. Rev. Lett.
103
, 097002
(2009
).42.
J.
Koch
, T. M.
Yu
, J.
Gambetta
, A. A.
Houck
, D. I.
Schuster
, J.
Majer
, A.
Blais
, M. H.
Devoret
, S. M.
Girvin
, and R. J.
Schoelkopf
, “Charge-insensitive qubit design derived from Cooper pair box
,” Phys. Rev. A
76
, 042319
(2007
).43.
K. S.
Kumar
, A.
Vepsäläinen
, S.
Danilin
, and G. S.
Paraoanu
, “Stimulated Raman adiabatic passage in a three-level superconducting circuit
,” Nat. Commun.
7
, 10628
(2016
).44.
J. R.
Johansson
, P. D.
Nation
, and F.
Nori
, “QuTiP 2: A Python framework for the dynamics of open quantum systems
,” Comput. Phys. Commun.
184
, 1234
(2013
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.