Exploring stable photocatalysts with superior optical absorption and high energy conversion efficiency is the key to water splitting. By means of the first-principles calculations, we report a ternary Sn2S2P4 monolayer with excellent stabilities. Remarkably, the material presents an indirect bandgap of 1.77 eV with the band edge perfectly crossing the redox potential of water. Monolayer Sn2S2P4 exhibits noticeable optical absorption and photocurrent density in the visible range and has adequate driving forces to trigger overall water splitting. Anisotropic and high carrier mobility facilitate the fast transport of photogenerated carriers. Moreover, a solar-to-hydrogen efficiency that reaches as high as 17.51% is theoretically predicted, thereby indicating that the Sn2S2P4 monolayer is a promising candidate for overall photocatalytic water splitting.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
2.
R.
Asahi
,
T.
Morikawa
,
T.
Ohwaki
,
K.
Aoki
, and
Y.
Taga
,
Science
293
,
269
(
2001
).
3.
W.
Hu
,
L.
Lin
,
R.
Zhang
,
C.
Yang
, and
J.
Yang
,
J. Am. Chem. Soc.
139
,
15429
(
2017
).
4.
Y.
Qu
and
X.
Duan
,
Chem. Soc. Rev.
42
,
2568
(
2013
).
5.
A.
Fujishima
and
K.
Honda
,
Nature
238
,
37
(
1972
).
6.
L.
Ju
,
J.
Shang
,
X.
Tang
, and
L.
Kou
,
J. Am. Chem. Soc.
142
,
1492
(
2020
).
7.
Y. L.
Liu
,
Y.
Shi
,
H.
Yin
, and
C. L.
Yang
,
Appl. Phys. Lett.
117
,
063901
(
2020
).
8.
T.
Yu
,
C.
Wang
,
X.
Yan
,
G.
Yang
, and
U.
Schwingenschlögl
,
J. Phys. Chem. Lett.
12
,
2464
(
2021
).
9.
S.
Sun
,
F.
Meng
,
Y.
Xu
,
J.
He
,
Y.
Ni
, and
H.
Wang
,
J. Mater. Chem. A
7
,
7791
(
2019
).
10.
S.
Cao
,
J.
Low
,
J.
Yu
, and
M.
Jaroniec
,
Adv. Mater.
27
,
2150
(
2015
).
11.
X.
Wang
,
K.
Maeda
,
X.
Chen
,
K.
Takanabe
,
K.
Domen
,
Y.
Hou
,
X.
Fu
, and
M.
Antonietti
,
J. Am. Chem. Soc.
131
,
1680
(
2009
).
12.
M.
Mukherjee
,
R.
Jana
, and
A.
Datta
,
Phys. Chem. Chem. Phys.
23
,
3925
(
2021
).
13.
X.
Lv
,
W.
Wei
,
Q.
Sun
,
F.
Li
,
B.
Huang
, and
Y.
Dai
,
Appl. Catal. B
217
,
275
(
2017
).
14.
C.
Chowdhury
,
S.
Karmakar
, and
A.
Datta
,
J. Phys. Chem. C
121
,
7615
(
2017
).
15.
H. Y.
Liu
,
C. L.
Yang
,
M. S.
Wang
, and
X. G.
Ma
,
Appl. Surf. Sci.
501
,
144263
(
2020
).
16.
L.
Li
,
Y.
Yu
,
G. J.
Ye
,
Q.
Ge
,
X.
Ou
,
H.
Wu
,
D.
Feng
,
X. H.
Chen
, and
Y.
Zhang
,
Nat. Nanotechnol.
9
,
372
(
2014
).
17.
A.
Rawat
,
N.
Jena
,
D.
Dimple
, and
A.
De Sarkar
,
J. Mater. Chem. A
6
,
8693
(
2018
).
18.
U.
Gupta
and
C. N. R.
Rao
,
Nano Energy
41
,
49
(
2017
).
19.
D.
Zhang
,
S.
Hu
,
X.
Liu
,
Y.
Chen
,
Y.
Xia
,
H.
Wang
,
H.
Wang
, and
Y.
Ni
,
ACS Appl. Energy Mater.
4
,
357
(
2021
).
20.
C.
Chowdhury
and
A.
Datta
,
J. Phys. Chem. Lett.
8
,
2909
(
2017
).
21.
Y.
Jing
,
Y.
Ma
,
Y.
Li
, and
T.
Heine
,
Nano Lett.
17
,
1833
(
2017
).
22.
F.
Shojaei
and
H. S.
Kang
,
J. Mater. Chem. C
5
,
11267
(
2017
).
23.
S.
Sun
,
F.
Meng
,
H.
Wang
,
H.
Wang
, and
Y.
Ni
,
J. Mater. Chem. A
6
,
11890
(
2018
).
24.
B.
Ghosh
,
S.
Puri
,
A.
Agarwal
, and
S.
Bhowmick
,
J. Phys. Chem. C
122
,
18185
(
2018
).
25.
L. P.
Feng
,
A.
Li
,
P. C.
Wang
, and
Z. T.
Liu
,
J. Phys. Chem. C
122
,
24359
(
2018
).
26.
N.
Miao
,
B.
Xu
,
N. C.
Bristowe
,
J.
Zhou
, and
Z.
Sun
,
J. Am. Chem. Soc.
139
,
11125
(
2017
).
27.
N.
Lu
,
Z.
Zhuo
,
H.
Guo
,
P.
Wu
,
W.
Fa
,
X.
Wu
, and
X. C.
Zeng
,
J. Phys. Chem. Lett.
9
,
1728
(
2018
).
28.
Y. L.
Zhu
,
J. H.
Yuan
,
Y. Q.
Song
,
K. H.
Xue
,
S.
Wang
,
C.
Lian
,
Z. N.
Li
,
M.
Xu
,
X. M.
Cheng
, and
X. S.
Miao
,
Int. J. Hydrogen Energy
44
,
21536
(
2019
).
29.
H. Y.
Liu
,
C. L.
Yang
,
M. S.
Wang
, and
X. G.
Ma
,
Appl. Surf. Sci.
517
,
146166
(
2020
).
30.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
31.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
32.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett
77
,
3865
(
1996
).
33.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
34.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
35.
P.
Giannozzi
,
S.
de Gironcoli
,
P.
Pavone
, and
S.
Baroni
,
Phys. Rev. B
43
,
7231
(
1991
).
36.
M.
Brandbyge
,
J.-L.
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
,
Phys. Rev. B
65
,
165401
(
2002
).
37.
J.
Taylor
,
H.
Guo
, and
J.
Wang
,
Phys. Rev. B
63
,
245407
(
2001
).
38.
J.
Guan
,
Z.
Zhu
, and
D.
Tománek
,
Phys. Rev. Lett.
113
,
046804
(
2014
).
39.
M.
Sun
and
U.
Schwingenschlögl
,
Chem. Mater.
32
,
4795
(
2020
).
40.
R.
Zacharia
,
H.
Ulbricht
, and
T.
Hertel
,
Phys. Rev. B
69
,
155406
(
2004
).
41.
J.
Dai
and
X. C.
Zeng
,
Angew. Chem. Int. Ed.
54
,
7572
(
2015
).
42.
X.
Zhang
,
X.
Zhao
,
D.
Wu
,
Y.
Jing
, and
Z.
Zhou
,
Adv. Sci.
3
,
1600062
(
2016
).
43.
P.
Liu
,
F.
Lu
,
M.
Wu
,
X.
Luo
,
Y.
Cheng
,
X. W.
Wang
,
W.
Wang
,
W. H.
Wang
,
H.
Liu
, and
K.
Cho
,
J. Mater. Chem. C
5
,
9066
(
2017
).
44.
R. C.
Andrew
,
R. E.
Mapasha
,
A. M.
Ukpong
, and
N.
Chetty
,
Phys. Rev. B
85
,
125428
(
2012
).
45.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
46.
A.
Castellanos-Gomez
,
M.
Poot
,
G. A.
Steele
,
H. S. J.
van der Zant
,
N.
Agraït
, and
G.
Rubio-Bollinger
,
Adv. Mater.
24
,
772
(
2012
).
47.
S.
Jiang
,
J.
Li
,
W.
Chen
,
H.
Yin
,
G. P.
Zheng
, and
Y.
Wang
,
Nanoscale
12
,
5888
(
2020
).
48.
H.
Yang
,
Y.
Ma
,
Y.
Liang
,
B.
Huang
, and
Y.
Dai
,
ACS Appl. Mater. Interface
11
,
37901
(
2019
).
49.
Y. L.
Liu
,
Y.
Shi
, and
C. L.
Yang
,
Appl. Surf. Sci.
545
,
148952
(
2021
).
50.
Z.
Dai
,
L.
Liu
, and
Z.
Zhang
,
Adv. Mater.
31
,
1805417
(
2019
).
51.
S.
Yang
,
Y.
Chen
, and
C.
Jiang
,
InfoMat
3
,
397
(
2021
).
52.
M.
Cao
,
L.
Luan
,
Z.
Wang
,
Y.
Zhang
,
Y.
Yang
,
J.
Liu
,
Y.
Tian
,
X.
Wei
,
J.
Fan
,
Y.
Xie
, and
L.
Duan
,
Appl. Phys. Lett.
119
,
083101
(
2021
).
53.
B. J.
Wang
,
X. H.
Li
,
R.
Zhao
,
X. L.
Cai
,
W. Y.
Yu
,
W. B.
Li
,
Z. S.
Liu
,
L. W.
Zhang
, and
S. H.
Ke
,
J. Mater. Chem. A
6
,
8923
(
2018
).
54.
J.
Bardeen
and
W.
Shockley
,
Phys. Rev.
80
,
72
(
1950
).
55.
A.
Pospischil
,
M. M.
Furchi
, and
T.
Mueller
,
Nat. Nanotechnol.
9
,
257
(
2014
).
56.
H.
Li
,
X.
Jiang
,
X.
Xu
,
G.
Xu
,
D.
Li
,
C.
Li
,
B.
Cui
, and
D. S.
Liu
,
Phys. Chem. Chem. Phys.
23
,
2475
(
2021
).
57.
C. F.
Fu
,
J.
Sun
,
Q.
Luo
,
X.
Li
,
W.
Hu
, and
J.
Yang
,
Nano Lett.
18
,
6312
(
2018
).
58.
L.
Ju
,
M.
Bie
,
X.
Tang
,
J.
Shang
, and
L.
Kou
,
ACS Appl. Mater. Interface
12
,
29335
(
2020
).
59.
J.
Liu
,
Y.
Shen
,
X.
Gao
,
L.
Lv
,
Y.
Ma
,
S.
Wu
,
X.
Wang
, and
Z.
Zhou
,
Appl. Catal. B
279
,
119368
(
2020
).

Supplementary Material

You do not currently have access to this content.