Heterogeneous package integration and chiplet approaches are the key technology to enable next-generation high performance small form-factor packages for emerging applications. Millimeter-wave packaging for fifth-generation and upcoming sixth-generation platforms also need to meet the high-density low signal-loss interconnect specifications utilizing advanced conductor and dielectric materials. This article presents the comparison of the liquid-based photoimageable dielectric (PID) and dry-film dielectric materials in terms of interconnect path losses that are critical in mm-wave frequency bands. The conductor loss being more dominant in the frequency bands and in thinner dielectric structures, we assess daisy chains and microstrip lines on 15-μm dielectric by measuring the S-parameters to quantify the impact of the surface roughness at around 28 GHz. Measured results from the daisy chain and microstrip line structures exhibit that the smooth surface of the liquid-based PID (3 nm) leads to 8%–32% lower signal loss in the dB scale than the 325-nm rough dry-film dielectric. The study provides comprehensive experimental results that the different material forms with various surface roughness largely impact the package-level interconnect loss.

1.
X.
Gu
,
D.
Liu
,
Y.
Hasegawa
,
K.
Masuko
,
C.
Baks
,
Y.
Suto
,
Y.
Fujisaku
,
B.
Sadhu
,
A.
Paidimarri
,
N.
Guan
, and
A.
Valdes-Garcia
, “
Antenna-in-package integration for a wide-band scalable 5G millimeter-wave phased-array module
,”
IEEE Microwave Wireless Compon. Lett.
31
,
682
684
(
2021
).
2.
I. F.
Akyildiz
,
A.
Kak
, and
S.
Nie
, “
6G and beyond: The future of wireless communications systems
,”
IEEE Access
8
,
133995
134030
(
2020
).
3.
A. O.
Watanabe
,
M.
Ali
,
S. Y. B.
Sayeed
,
R. R.
Tummala
, and
M. R.
Pulugurtha
, “
A review of 5G front-end systems package integration
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
11
,
118
133
(
2021
).
4.
M. T.
Lanagan
,
L.
Cai
,
L. A.
Lamberson
,
J.
Wu
,
E.
Streltsova
, and
N. J.
Smith
, “
Dielectric polarizability of alkali and alkaline-earth modified silicate glasses at microwave frequency
,”
Appl. Phys. Lett.
116
,
222902
(
2020
).
5.
A.
Kasahara
,
T.
Iwakura
,
Y.
Kondo
,
T.
Irino
, and
H.
Shimizu
, “
Ultra low loss build-up film for fine pitch applications
,” in
2016 International Conference on Electronics Packaging (ICEP)
(
IEEE
,
2016
), pp.
43
47
.
6.
A. O.
Watanabe
,
T. H.
Lin
,
M.
Ali
,
Y.
Wang
,
V.
Smet
,
P. M.
Raj
,
M. M.
Tentzeris
,
R. R.
Tummala
, and
M.
Swaminathan
, “
Ultrathin antenna-integrated glass-based millimeter-wave package with through-glass vias
,”
IEEE Trans. Microwave Theory Tech.
68
,
5082
5092
(
2020
).
7.
Y. S.
Mekonnen
,
M. J.
Hill
,
L.
Wojewoda
, and
K.
Aygün
, “
Robust temperature and humidity dependent electrical package material characterization
,” in
2018 IEEE 27th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)
(
IEEE
,
2018
), pp.
195
197
.
8.
T.
Kakutani
,
D.
Okamoto
,
Z.
Guan
,
Y.
Suzuki
,
M.
Ali
,
A.
Watanabe
,
M.
Kathaperumal
, and
M.
Swaminathan
, “
Advanced low loss dielectric material reliability and filter characteristics at high frequency for mmwave applications
,” in
2020 IEEE 70th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2020
), pp.
653
659
.
9.
S.
Fujishima
and
H.
Sakauchi
, “
Recent trend of layer-to-layer insulation resin for high frequency package
,” in
2017 International Conference on Electronics Packaging (ICEP)
(
IEEE
,
2017
), pp.
337
340
.
10.
M.
Tomikawa
,
H.
Araki
,
Y.
Kiuchi
, and
A.
Shimada
, “
Photosensitive polyimide having low loss tangent for RF application
,” in
International Symposium on Microelectronics
(
International Microelectronics Assembly and Packaging Society
,
2018
), pp.
000476
000482
.
11.
H.
Araki
,
Y.
Kiuchi
,
A.
Shimada
,
H.
Ogasawara
,
M.
Jukei
, and
M.
Tomikawa
, “
Low Df polyimide with photosensitivity for high frequency applications
,”
J. Photopolym. Sci. Technol.
33
,
165
170
(
2020
).
12.
C.
Hayes
,
K.
Wang
,
R.
Bell
,
C.
Calabrese
,
M.
Gallagher
,
K.
Thompson
,
R. K.
Barr
,
K.
Best
,
C.
Shay
, and
C.
Ayala
, “
High aspect ratio, high resolution, and broad process window description of a low loss photodielectric for 5G HS/HF applications using high and low numerical aperture photolithography tools
,” in
2020 IEEE 70th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2020
), pp.
623
628
.
13.
V.
Sukharev
,
A.
Kteyan
,
J.
Choy
,
H.
Hovsepyan
,
A.
Markosian
,
E.
Zschech
, and
R.
Huebner
, “
Stress-induced effects caused by 3D IC TSV packaging in advanced semiconductor device performance
,”
AIP Conf. Proc.
1395
,
249
258
(
2011
).
14.
G.
Gold
and
K.
Helmreich
, “
A physical surface roughness model and its applications
,”
IEEE Trans. Microwave Theory Tech.
65
,
3720
3732
(
2017
).
15.
B.
Curran
,
G.
Fotheringham
,
C.
Tschoban
,
I.
Ndip
, and
K.
Lang
, “
On the modeling, characterization, and analysis of the current distribution in pcb transmission lines with surface finishes
,”
IEEE Trans. Microwave Theory Tech.
64
,
2511
2518
(
2016
).
16.
L.
Tsang
,
X.
Gu
, and
H.
Braunisch
, “
Effects of random rough surface on absorption by conductors at microwave frequencies
,”
IEEE Microwave Wireless Compon. Lett.
16
,
221
223
(
2006
).
17.
Y.
Shlepnev
and
C.
Nwachukwu
, “
Practical methodology for analyzing the effect of conductor roughness on signal losses and dispersion in interconnects
,” in DesignCon (
2012
).
18.
A. O.
Watanabe
,
H.
Ito
,
R. P.
Markondeya
,
R. R.
Tummala
, and
M.
Swaminathan
, “
Low-loss impedance-matched sub-25-μm vias in 3D millimeter-wave packages
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
10
,
870
877
(
2020
).
19.
H.
Ito
,
K.
Kanno
,
A.
Watanabe
,
R.
Tsuyuki
,
R.
Tatara
,
M.
Raj
, and
R. R.
Tummala
, “
Advanced low-loss and high-density photosensitive dielectric material for RF/millimeter-wave applications
,” in
2019 International Wafer Level Packaging Conference (IWLPC)
(
IEEE
,
2019
), pp.
1
6
.
20.
C. S.
Geyik
,
Y. S.
Mekonnen
,
Z.
Zhang
, and
K.
Aygün
, “
Impact of use conditions on dielectric and conductor material models for high-speed package interconnects
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
9
,
1942
1951
(
2019
).
21.
E.
McGibney
,
J.
Barton
,
L.
Floyd
,
P.
Tassie
, and
J.
Barrett
, “
The high frequency electrical properties of interconnects on a flexible polyimide substrate including the effects of humidity
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
1
,
4
15
(
2011
).
22.
A.
Lamminen
,
J.
Säily
,
J.
Ala-Laurinaho
,
J.
de Cos
, and
V.
Ermolov
, “
Patch antenna and antenna array on multilayer high-frequency PCB for D-band
,”
IEEE Open J. Antennas Propag.
1
,
396
403
(
2020
).
23.
S.
Hall
,
S. G.
Pytel
,
P. G.
Huray
,
D.
Hua
,
A.
Moonshiram
,
G. A.
Brist
, and
E.
Sijercic
, “
Multigigahertz causal transmission line modeling methodology using a 3-D hemispherical surface roughness approach
,”
IEEE Trans. Microwave Theory Tech.
55
,
2614
2624
(
2007
).
24.
P. G.
Huray
,
O.
Oluwafemi
,
J.
Loyer
,
E.
Bogatin
, and
X.
Ye
, “
Impact of copper surface texture on loss: A model that works
,”
DesignCon 2010
1
,
462
483
(
2010
).
25.
C. S.
Geyik
,
Z.
Zhang
,
S. R.
Christ
,
L. E.
Wojewoda
, and
K.
Aygün
, “
Temperature impact on surface roughness modeling for on-package high speed interconnects
,” in
2018 IEEE 27th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)
(
IEEE
,
2018
), pp.
271
273
.
26.
S. S.
Agili
,
A. W.
Morales
,
J.
Li
, and
M.
Resso
, “
Modeling relative humidity and temperature effects on scattering parameters in transmission lines
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
2
,
1847
1858
(
2012
).
27.
A.
Morales
,
S.
Agili
,
M.
Resso
,
J.
Clark
, and
C.
Kocuba
, “
Effects of temperature and relative humidity in transmission systems using differential signaling
,” in
DesignCon 2013: Where Chipheads Connect
(
PennState
,
2013
), pp.
520
536
.
You do not currently have access to this content.