Reactive multilayers can be used for energy storage as well as releasing large amounts of heat in a short time. Molecular Dynamics (MD) simulations are used to study the influence of the crystal structure on the reaction front propagation in Al–Ni multilayers. Different microstructures, namely, amorphous, single crystal, columnar grains, and randomly oriented grains of varying size, are investigated. The effect of the microstructure on the propagation speed is studied and compared to existing experimental results. Furthermore, MD simulations allow to study the inter-diffusion of the Al and Ni layers. It is found that crystallinity has a significant impact on the front propagation speed, which is likely related to different diffusion mechanisms. The more disordered the individual layers become, e.g., by increasing the grain boundary density, the higher is the resulting propagation speed.

1.
R. A.
Guidotti
and
P.
Masset
, “
Thermally activated (“thermal”) battery technology: Part I: An overview
,”
J. Power Sources
161
,
1443
1449
(
2006
).
2.
P.
Erri
,
J.
Nader
, and
A.
Varma
, “
Controlling combustion wave propagation for transition metal/alloy/cermet foam synthesis
,”
Adv. Mater.
20
,
1243
1245
(
2008
).
3.
K.-T.
Lu
,
Y.-C.
Wang
,
T.-F.
Yeh
, and
C.-W.
Wu
, “
Investigation of the burning properties of Zr/B type and Ti/B type alloy delay compositions
,”
Combust. Flame
156
,
1677
1682
(
2009
).
4.
C.
Farley
and
M.
Pantoya
, “
Reaction kinetics of nanometric aluminum and iodine pentoxide
,”
J. Therm. Anal. Calorim.
102
,
609
613
(
2010
).
5.
Q.
Zeng
,
T.
Wang
,
M.
Li
, and
Y.
Ren
, “
Mechanism and characteristics on the electric explosion of Al/Ni reactive multilayer foils
,”
Appl. Phys. Lett.
115
,
093102
(
2019
).
6.
A. S.
Rogachev
,
S. G.
Vadchenko
,
A. A.
Nepapushev
,
S. A.
Rogachev
,
Y. B.
Scheck
, and
A. S.
Mukasyan
, “
Gasless reactive compositions for materials joining: An overview
,”
Adv. Eng. Mater.
20
,
1701044
(
2018
).
7.
B.
Rheingans
,
I.
Spies
,
A.
Schumacher
,
S.
Knappmann
,
R.
Furrer
,
L. P. H.
Jeurgens
, and
J.
Janczak-Rusch
, “
Joining with reactive nano-multilayers: Influence of thermal properties of components on joint microstructure and mechanical performance
,”
Appl. Sci.
9
,
262
(
2019
).
8.
S.
Danzi
,
V.
Schnabel
,
J.
Gabl
,
A.
Sologubenko
,
H.
Galinski
, and
R.
Spolenak
, “
Self-healing electronics: Rapid on-chip healing of metal thin films (Adv. Mater. Technol. 3/2019)
,”
Adv. Mater. Technol.
4
,
1970015
(
2019
).
9.
R.
Knepper
,
M. R.
Snyder
,
G.
Fritz
,
K.
Fisher
,
O. M.
Knio
, and
T. P.
Weihs
, “
Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers
,”
J. Appl. Phys.
105
,
083504
(
2009
).
10.
G. M.
Fritz
,
H.
Joress
, and
T. P.
Weihs
, “
Enabling and controlling slow reaction velocities in low-density compacts of multilayer reactive particles
,”
Combust. Flame
158
,
1084
1088
(
2011
).
11.
S.
Danzi
,
V.
Schnabel
,
X.
Zhao
,
J.
Käch
, and
R.
Spolenak
, “
Architecture-independent reactivity tuning of Ni/Al multilayers by solid solution alloying
,”
Appl. Phys. Lett.
114
,
183102
(
2019
).
12.
S.
Danzi
,
M.
Menétrey
,
J.
Wohlwend
, and
R.
Spolenak
, “
Thermal management in Ni/Al reactive multilayers: Understanding and preventing reaction quenching on thin film heat sinks
,”
ACS Appl. Mater. Interfaces
11
,
42479
42485
(
2019
).
13.
F.
Baras
,
V.
Turlo
,
O.
Politano
,
S. G.
Vadchenko
,
A. S.
Rogachev
, and
A. S.
Mukasyan
, “
SHS in Ni/Al nanofoils: A review of experiments and molecular dynamics simulations
,”
Adv. Eng. Mater.
20
,
1800091
(
2018
).
14.
F.
Baras
and
O.
Politano
, “
Molecular dynamics simulations of nanometric metallic multilayers: Reactivity of the Ni-Al system
,”
Phys. Rev. B
84
,
024113
(
2011
).
15.
R.-G.
Xu
,
M. L.
Falk
, and
T. P.
Weihs
, “
Interdiffusion of Ni-Al multilayers: A continuum and molecular dynamics study
,”
J. Appl. Phys.
114
,
163511
(
2013
).
16.
V.
Turlo
,
O.
Politano
, and
F.
Baras
, “
Dissolution process at solid/liquid interface in nanometric metallic multilayers: Molecular dynamics simulations versus diffusion modeling
,”
Acta Mater.
99
,
363
372
(
2015
).
17.
M. J.
Cherukara
,
K. G.
Vishnu
, and
A.
Strachan
, “
Role of nanostructure on reaction and transport in Ni/Al intermolecular reactive composites
,”
Phys. Rev. B
86
,
075470
(
2012
).
18.
O.
Politano
,
F.
Baras
,
A.
Mukasyan
,
S.
Vadchenko
, and
A.
Rogachev
, “
Microstructure development during NiAl intermetallic synthesis in reactive Ni–Al nanolayers: Numerical investigations vs. tem observations
,”
Surf. Coat. Technol.
215
,
485
492
(
2013
).
19.
O.
Politano
and
F.
Baras
, “
Molecular dynamics simulations of self-propagating reactions in Ni–Al multilayer nanofoils
,”
J. Alloys Compd.
652
,
25
29
(
2015
).
20.
V.
Turlo
,
O.
Politano
, and
F.
Baras
, “
Modeling self-sustaining waves of exothermic dissolution in nanometric Ni-Al multilayers
,”
Acta Mater.
120
,
189
204
(
2016
).
21.
A.
Rogachev
,
S.
Vadchenko
,
F.
Baras
,
O.
Politano
,
S.
Rouvimov
,
N.
Sachkova
,
M.
Grapes
,
T.
Weihs
, and
A.
Mukasyan
, “
Combustion in reactive multilayer Ni/Al nanofoils: Experiments and molecular dynamic simulation
,”
Combust. Flame
166
,
158
169
(
2016
).
22.
B.
Witbeck
,
J.
Sink
, and
D. E.
Spearot
, “
Influence of vacancy defect concentration on the combustion of reactive Ni/Al nanolaminates
,”
J. Appl. Phys.
124
,
045105
(
2018
).
23.
B.
Witbeck
and
D. E.
Spearot
, “
Grain size effects on Ni/Al nanolaminate combustion
,”
J. Mater. Res.
34
,
2229
2238
(
2019
).
24.
B.
Witbeck
and
D. E.
Spearot
, “
Role of grain boundary structure on diffusion and dissolution during Ni/Al nanolaminate combustion
,”
J. Appl. Phys.
127
,
125111
(
2020
).
25.
O.
Politano
and
F.
Baras
, “
Reaction front propagation in nanocrystalline Ni/Al composites: A molecular dynamics study
,”
J. Appl. Phys.
128
,
215301
(
2020
).
26.
K.
Woll
,
A.
Bergamaschi
,
K.
Avchachov
,
F.
Djurabekova
,
S.
Gier
,
C.
Pauly
,
P.
Leibenguth
,
C.
Wagner
,
K.
Nordlund
, and
F.
Mücklich
, “
Ru/Al multilayers integrate maximum energy density and ductility for reactive materials
,”
Sci. Rep.
6
,
19535
(
2016
).
27.
V. I.
Jordan
and
I. A.
Shmakov
, “
Reproducibility of a heterophase structure emergence effect when changing the ignition temperature of SHS in a layered nanosized nonstoichiometric Ti-Al system
,”
J. Phys.: Conf. Ser.
1281
,
012030
(
2019
).
28.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
29.
G. P.
Pun
and
Y.
Mishin
, “
Development of an interatomic potential for the Ni-Al system
,”
Philos. Mag.
89
,
3245
3267
(
2009
).
30.
P.
Hirel
, “
Atomsk: A tool for manipulating and converting atomic data files
,”
Comput. Phys. Commun.
197
,
212
219
(
2015
).
31.
A. F.
Jankowski
, “
Vapor deposition and characterization of nanocrystalline nanolaminates
,”
Surf. Coat. Technol.
203
,
484
489
(
2008
).
32.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
33.
R.
Armstrong
, “
Models for gasless combustion in layered materials and random media
,”
Combust. Sci. Technol.
71
,
155
174
(
1990
).
34.
S. C.
Kelly
and
N. N.
Thadhani
, “
Shock compression response of highly reactive Ni + Al multilayered thin foils
,”
J. Appl. Phys.
119
,
095903
(
2016
).
35.
G. M.
Fritz
,
J. A.
Grzyb
,
O. M.
Knio
,
M. D.
Grapes
, and
T. P.
Weihs
, “
Characterizing solid-state ignition of runaway chemical reactions in Ni-Al nanoscale multilayers under uniform heating
,”
J. Appl. Phys.
118
,
135101
(
2015
).
36.
V.
Turlo
,
O.
Politano
, and
F.
Baras
, “
Alloying propagation in nanometric Ni/Al multilayers: A molecular dynamics study
,”
J. Appl. Phys.
121
,
055304
(
2017
).
37.
A. B.
Mann
,
A. J.
Gavens
,
M. E.
Reiss
,
D.
Van Heerden
,
G.
Bao
, and
T. P.
Weihs
, “
Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils
,”
J. Appl. Phys.
82
,
1178
1188
(
1997
).
38.
E.
Ma
,
C. V.
Thompson
, and
L. A.
Clevenger
, “
Nucleation and growth during reactions in multilayer Al/Ni films: The early stage of Al3Ni formation
,”
J. Appl. Phys.
69
,
2211
2218
(
1991
).
39.
V.
Turlo
,
F.
Baras
, and
O.
Politano
, “
Comparative study of embedded-atom methods applied to the reactivity in the Ni–Al system
,”
Modell. Simul. Mater. Sci. Eng.
25
,
064002
(
2017
).
40.
D.
Gall
, “
Electron mean free path in elemental metals
,”
J. Appl. Phys.
119
,
085101
(
2016
).
41.
A.
Rogachev
,
S.
Vadchenko
,
F.
Baras
,
O.
Politano
,
S.
Rouvimov
,
N.
Sachkova
, and
A.
Mukasyan
, “
Structure evolution and reaction mechanism in the Ni/Al reactive multilayer nanofoils
,”
Acta Mater.
66
,
86
96
(
2014
).
42.
A. J.
Gavens
,
D.
Van Heerden
,
A. B.
Mann
,
M. E.
Reiss
, and
T. P.
Weihs
, “
Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils
,”
J. Appl. Phys.
87
,
1255
1263
(
2000
).
You do not currently have access to this content.