The high potential of polycrystalline Ge as a thin-film thermoelectric material was demonstrated. We synthesize a polycrystalline Ge layer on an insulating substrate at 450 °C via advanced solid-phase crystallization and control its carrier concentration through the solid-phase diffusion of various p- and n-type dopants. The heating deposition (150 °C) of the amorphous precursor considerably improves the crystal quality of the polycrystalline Ge layer as well as the doping properties. The solid-phase diffusion of Ga and P dopants onto the Ge layers allows for control of the carrier concentration in the ranges of 1017–1020 cm−3 for p-type and 1018–1019 cm−3 for n-type, respectively, by modulating the diffusion annealing temperature and time. Because of the high electrical conductivities reflecting the carrier mobilities and carrier concentrations, the maximum power factors reach a value of 1080 μW m−1 K−2 for p-type and 2300 μW m−1 K−2 for n-type at room temperature. These power factors are higher than those of most polycrystalline semiconductor thin films formed at temperatures below 1000 °C. Therefore, this study serves as a milestone toward high-performance and reliable thin-film thermoelectric generators based on an environmentally friendly semiconductor.

1.
I.
Petsagkourakis
,
K.
Tybrandt
,
X.
Crispin
,
I.
Ohkubo
,
N.
Satoh
, and
T.
Mori
,
Sci. Technol. Adv. Mater.
19
,
836
(
2018
).
2.
J. P.
Dismukes
,
L.
Ekstrom
,
E. F.
Steigmeier
,
I.
Kudman
, and
D. S.
Beers
,
J. Appl. Phys.
35
,
2899
(
1964
).
3.
C. B.
Vining
,
J. Appl. Phys.
69
,
331
(
1991
).
4.
S. N.
Khatami
and
Z.
Aksamija
,
Phys. Rev. Appl.
6
,
014015
(
2016
).
5.
N.
Uchida
,
J.
Hattori
,
R. R.
Lieten
,
Y.
Ohishi
,
R.
Takase
,
M.
Ishimaru
,
K.
Fukuda
,
T.
Maeda
, and
J.-P.
Locquet
,
J. Appl. Phys.
126
,
145105
(
2019
).
6.
J. A.
Perez-Taborda
,
M.
Munoz Rojo
,
J.
Maiz
,
N.
Neophytou
, and
M.
Martin-Gonzalez
,
Sci. Rep.
6
,
32778
(
2016
).
7.
A.
Portavoce
,
H.
Khelidj
,
N.
Oueldna
,
S.
Amhil
,
M.
Bertoglio
,
D.
Mangelinck
,
L.
Essaleh
, and
K.
Hoummada
,
Materialia
14
,
100873
(
2020
).
8.
Z.
Wang
,
P.
Fiorini
,
V.
Leonov
, and
C.
Hoof
,
J. Micromech. Microeng.
19
,
094011
(
2009
).
9.
J.
Lu
,
R.
Guo
, and
B.
Huang
,
Appl. Phys. Lett.
108
,
141903
(
2016
).
10.
K.
Takahashi
,
H.
Ikenoue
,
M.
Sakashita
,
O.
Nakatsuka
,
S.
Zaima
, and
M.
Kurosawa
,
Appl. Phys. Express
12
,
051016
(
2019
).
11.
H.
Takiguchi
,
M.
Aono
, and
Y.
Okamoto
,
Jpn. J. Appl. Phys., Part 1
50
,
041301
(
2011
).
12.
Y.
Peng
,
H.
Lai
,
C.
Liu
,
J.
Gao
,
M.
Kurosawa
,
O.
Nakatsuka
,
T.
Takeuchi
,
S.
Zaima
,
S.
Tanemura
, and
L.
Miao
,
Appl. Phys. Lett.
117
,
053903
(
2020
).
13.
K.
Kusano
,
A.
Yamamoto
,
M.
Nakata
,
T.
Suemasu
, and
K.
Toko
,
ACS Appl. Energy Mater.
1
,
5280
(
2018
).
14.
M.
Tsuji
,
M.
Murata
,
A.
Yamamoto
,
T.
Suemasu
, and
K.
Toko
,
Appl. Phys. Lett.
117
,
162103
(
2020
).
15.
T.
Ozawa
,
K.
Kusano
,
M.
Murata
,
A.
Yamamoto
,
T.
Suemasu
, and
K.
Toko
,
J. Appl. Phys.
129
,
015303
(
2021
).
16.
S. K.
Bux
,
R. G.
Blair
,
P. K.
Gogna
,
H.
Lee
,
G.
Chen
,
M. S.
Dresselhaus
,
R. B.
Kaner
, and
J.-P.
Fleurial
,
Adv. Funct. Mater.
19
,
2445
(
2009
).
17.
Y.
Nakamura
,
M.
Isogawa
,
T.
Ueda
,
S.
Yamasaka
,
H.
Matsui
,
J.
Kikkawa
,
S.
Ikeuchi
,
T.
Oyake
,
T.
Hori
,
J.
Shiomi
, and
A.
Sakai
,
Nano Energy
12
,
845
(
2015
).
18.
J.
Mao
,
Y.
Wang
,
Z.
Liu
,
B.
Ge
, and
Z.
Ren
,
Nano Energy
32
,
174
(
2017
).
19.
R.
Anufriev
,
A.
Ramiere
,
J.
Maire
, and
M.
Nomura
,
Nat. Commun.
8
,
15505
(
2017
).
20.
T. H.
Geballe
and
G. W.
Hull
,
Phys. Rev.
94
,
1134
(
1954
).
21.
T.
Taniguchi
,
T.
Ishibe
,
R.
Hosoda
,
Y.
Wagatsuma
,
M. M.
Alam
,
K.
Sawano
,
M.
Uenuma
,
Y.
Uraoka
,
Y.
Yamashita
,
N.
Mori
, and
Y.
Nakamura
,
Appl. Phys. Lett.
117
,
141602
(
2020
).
22.
K.
Kusano
,
M.
Tsuji
,
T.
Suemasu
, and
K.
Toko
,
Appl. Phys. Express
12
,
055501
(
2019
).
23.
M.
Tsuji
,
K.
Kusano
,
T.
Suemasu
, and
K.
Toko
,
Appl. Phys. Lett.
116
,
182105
(
2020
).
24.
K.
Toko
,
I.
Nakao
,
T.
Sadoh
,
T.
Noguchi
, and
M.
Miyao
,
Solid State Electron.
53
,
1159
(
2009
).
25.
H.
Haesslein
,
R.
Sielemann
, and
C.
Zistl
,
Phys. Rev. Lett.
80
,
2626
(
1998
).
26.
M.
Koike
,
Y.
Kamata
,
T.
Ino
,
D.
Hagishima
,
K.
Tatsumura
,
M.
Koyama
, and
A.
Nishiyama
,
J. Appl. Phys.
104
,
023523
(
2008
).
27.
E. N.
Sgourou
,
Y.
Panayiotatos
,
R. V.
Vovk
,
N.
Kuganathan
, and
A.
Chroneos
,
Appl. Sci.
9
,
2454
(
2019
).
28.
K.
Toko
,
R.
Yoshimine
,
K.
Moto
, and
T.
Suemasu
,
Sci. Rep.
7
,
16981
(
2017
).
29.
T.
Imajo
,
K.
Moto
,
R.
Yoshimine
,
T.
Suemasu
, and
K.
Toko
,
Appl. Phys. Express
12
,
015508
(
2019
).
30.
M.
Saito
,
K.
Moto
,
T.
Nishida
,
T.
Suemasu
, and
K.
Toko
,
Sci. Rep.
9
,
16558
(
2019
).
31.
K.
Moto
,
K.
Yamamoto
,
T.
Imajo
,
T.
Suemasu
,
H.
Nakashima
, and
K.
Toko
,
Appl. Phys. Lett.
114
,
212107
(
2019
).
32.
M.
Jamil
,
J.
Mantey
,
E. U.
Onyegam
,
G. D.
Carpenter
,
E.
Tutuc
, and
S. K.
Banerjee
,
IEEE Electron Device Lett.
32
,
1203
(
2011
).
33.
A. Z.
Al-Attili
,
S.
Kako
,
M. K.
Husain
,
F. Y.
Gardes
,
H.
Arimoto
,
N.
Higashitarumizu
,
S.
Iwamoto
,
Y.
Arakawa
,
Y.
Ishikawa
, and
S.
Saito
,
Jpn. J. Appl. Phys., Part 1
54
,
052101
(
2015
).
34.
R.
Takaguchi
,
R.
Matsumura
,
T.
Katoh
,
M.
Takenaka
, and
S.
Takagi
,
Jpn. J. Appl. Phys., Part 1
57
,
04FD10
(
2018
).
35.
N. S.
Bennett
and
N. E. B.
Cowern
,
Appl. Phys. Lett.
100
,
172106
(
2012
).
36.
V.
Boldrini
,
S. M.
Carturan
,
G.
Maggioni
,
E.
Napolitani
,
D. R.
Napoli
,
R.
Camattari
, and
D. D.
Salvador
,
Appl. Surf. Sci.
392
,
1173
(
2017
).
37.
A. D.
Le Claire
,
Br. J. Appl. Phys.
14
,
351
(
1963
).
38.
S. M.
Sze
and
J. C.
Irvin
,
Solid State Electron.
11
,
599
(
1968
).
39.
W. C.
Dunlap
,
Phys. Rev.
94
,
1531
(
1954
).
40.
F. A.
Trumbore
,
Bell Syst. Tech. J.
39
,
205
(
1960
).
41.
J. W. Y.
Seto
,
J. Appl. Phys.
46
,
5247
(
1975
).
You do not currently have access to this content.