Cs2AgBiBr6 (CABB) has been proposed as a promising nontoxic alternative to lead halide perovskites. However, low charge carrier collection efficiencies remain an obstacle for the incorporation of this material in optoelectronic applications. In this work, we study the optoelectronic properties of CABB thin films using steady state and transient absorption and reflectance spectroscopy. We find that optical measurements on such thin films are distorted as a consequence of multiple reflections within the film. Moreover, we discuss the pathways behind conductivity loss in these thin films, using a combination of microsecond transient absorption spectroscopy and time-resolved microwave conductivity measurements. We demonstrate that a combined effect of carrier loss and localization results in the conductivity loss in CABB thin films. Moreover, we find that the charge carrier diffusion length and grain size are of the same order of magnitude. This suggests that the material's surface is an important contributor to charge-carrier loss.

1.
S. D.
Stranks
and
H. J.
Snaith
,
Nat. Nanotechnol.
10
,
391
(
2015
).
2.
M. B.
Johnston
and
L. M.
Herz
,
Acc. Chem. Res.
49
,
146
(
2016
).
3.
E. M.
Hutter
,
R.
Sangster
,
C.
Testerink
,
B.
Ehrler
, and
C. M. M.
Gommers
, arXiv:2012.06219 (
2020
).
4.
A.
Babayigit
,
A.
Ethirajan
,
M.
Muller
, and
B.
Conings
,
Nat. Mater.
15
,
247
(
2016
).
5.
H.
Huang
,
B.
Pradhan
,
J.
Hofkens
,
M. B. J.
Roeffaers
, and
J. A.
Steele
,
ACS Energy Lett.
5
,
1107
(
2020
).
6.
T.
Jafari
,
E.
Moharreri
,
A.
Amin
,
R.
Miao
,
W.
Song
, and
S.
Suib
,
Molecules
21
,
900
(
2016
).
7.
A. H.
Slavney
,
R. W.
Smaha
,
I. C.
Smith
,
A.
Jaffe
,
D.
Umeyama
, and
H. I.
Karunadasa
,
Inorg. Chem.
56
,
46
(
2017
).
8.
A. H.
Slavney
,
T.
Hu
,
A. M.
Lindenberg
, and
H. I.
Karunadasa
,
J. Am. Chem. Soc.
138
,
2138
(
2016
).
9.
E. T.
McClure
,
M. R.
Ball
,
W.
Windl
, and
P. M.
Woodward
,
Chem. Mater.
28
,
1348
(
2016
).
10.
Z.
Xiao
,
Z.
Song
, and
Y.
Yan
,
Adv. Mater.
31
,
1803792
(
2019
).
11.
R. L. Z.
Hoye
,
L.
Eyre
,
F.
Wei
,
F.
Brivio
,
A.
Sadhanala
,
S.
Sun
,
W.
Li
,
K. H. L.
Zhang
,
J. L.
MacManus-Driscoll
,
P. D.
Bristowe
,
R. H.
Friend
,
A. K.
Cheetham
, and
F.
Deschler
,
Adv. Mater. Interfaces
5
,
1800464
(
2018
).
12.
E.
Greul
,
M. L.
Petrus
,
A.
Binek
,
P.
Docampo
, and
T.
Bein
,
J. Mater. Chem. A
5
,
19972
(
2017
).
13.
G.
Volonakis
,
M. R.
Filip
,
A. A.
Haghighirad
,
N.
Sakai
,
B.
Wenger
,
H. J.
Snaith
, and
F.
Giustino
,
J. Phys. Chem. Lett.
7
,
1254
(
2016
).
14.
L.
Schade
,
A. D.
Wright
,
R. D.
Johnson
,
M.
Dollmann
,
B.
Wenger
,
P. K.
Nayak
,
D.
Prabhakaran
,
L. M.
Herz
,
R.
Nicholas
,
H. J.
Snaith
, and
P. G.
Radaelli
,
ACS Energy Lett.
4
,
299
(
2019
).
15.
C. N.
Savory
,
A.
Walsh
, and
D. O.
Scanlon
,
ACS Energy Lett.
1
,
949
(
2016
).
16.
G.
Longo
,
S.
Mahesh
,
L. R. V.
Buizza
,
A. D.
Wright
,
A. J.
Ramadan
,
M.
Abdi-Jalebi
,
P. K.
Nayak
,
L. M.
Herz
, and
H. J.
Snaith
,
ACS Energy Lett.
5
,
2200
(
2020
).
17.
W.
Pan
,
H.
Wu
,
J.
Luo
,
Z.
Deng
,
C.
Ge
,
C.
Chen
,
X.
Jiang
,
W.-J.
Yin
,
G.
Niu
,
L.
Zhu
,
L.
Yin
,
Y.
Zhou
,
Q.
Xie
,
X.
Ke
,
M.
Sui
, and
J.
Tang
,
Nat. Photonics
11
,
726
(
2017
).
18.
Z.
Zhang
,
C. C.
Chung
,
Z.
Huang
,
E.
Vetter
,
D.
Seyitliyev
,
D.
Sun
,
K.
Gundogdu
,
F. N.
Castellano
,
E. O.
Danilov
, and
G.
Yang
,
Mater. Lett.
269
,
127667
(
2020
).
19.
L.
Zhou
,
Y.-F.
Xu
,
B.-X.
Chen
,
D.-B.
Kuang
, and
C.-Y.
Su
,
Small
14
,
1703762
(
2018
).
20.
D.
Bartesaghi
,
A. H.
Slavney
,
M. C.
Gélvez-Rueda
,
B. A.
Connor
,
F. C.
Grozema
,
H. I.
Karunadasa
, and
T. J.
Savenije
,
J. Phys. Chem. C
122
,
4809
(
2018
).
21.
A. D.
Wright
,
L. R. V.
Buizza
,
K. J.
Savill
,
G.
Longo
,
H. J.
Snaith
,
M. B.
Johnston
, and
L. M.
Herz
,
J. Phys. Chem. Lett.
12
,
3352
(
2021
).
22.
Z.
Li
,
S. R.
Kavanagh
,
M.
Napari
,
R. G.
Palgrave
,
M.
Abdi-Jalebi
,
Z.
Andaji-Garmaroudi
,
D. W.
Davies
,
M.
Laitinen
,
J.
Julin
,
M. A.
Isaacs
,
R. H.
Friend
,
D. O.
Scanlon
,
A.
Walsh
, and
R. L. Z.
Hoye
,
J. Mater. Chem. A
8
,
21780
(
2020
).
23.
B. A.
Connor
,
L.
Leppert
,
M. D.
Smith
,
J. B.
Neaton
, and
H. I.
Karunadasa
,
J. Am. Chem. Soc.
140
,
5235
(
2018
).
24.
S. J.
Zelewski
,
J. M.
Urban
,
A.
Surrente
,
D. K.
Maude
,
A.
Kuc
,
L.
Schade
,
R. D.
Johnson
,
M.
Dollmann
,
P. K.
Nayak
,
H. J.
Snaith
,
P.
Radaelli
,
R.
Kudrawiec
,
R. J.
Nicholas
,
P.
Plochocka
, and
M.
Baranowski
,
J. Mater. Chem. C
7
,
8350
(
2019
).
25.
S. E.
Creutz
,
E. N.
Crites
,
M. C.
De Siena
, and
D. R.
Gamelin
,
Nano Lett.
18
,
1118
(
2018
).
26.
B.
Yang
,
J.
Chen
,
S.
Yang
,
F.
Hong
,
L.
Sun
,
P.
Han
,
T.
Pullerits
,
W.
Deng
, and
K.
Han
,
Angew. Chem. Int. Ed.
57
,
5359
(
2018
).
27.
J. A.
Steele
,
P.
Puech
,
M.
Keshavarz
,
R.
Yang
,
S.
Banerjee
,
E.
Debroye
,
C. W.
Kim
,
H.
Yuan
,
N. H.
Heo
,
J.
Vanacken
,
A.
Walsh
,
J.
Hofkens
, and
M. B. J.
Roeffaers
,
ACS Nano
12
,
8081
(
2018
).
28.
S. O. M.
Hinterding
,
B. B. V.
Salzmann
,
S. J. W.
Vonk
,
D.
Vanmaekelbergh
,
B. M.
Weckhuysen
,
E. M.
Hutter
, and
F. T.
Rabouw
,
ACS Nano
15
,
7216
(
2021
).
29.
R.
Kentsch
,
M.
Scholz
,
J.
Horn
,
D.
Schlettwein
,
K.
Oum
, and
T.
Lenzer
,
J. Phys. Chem. C
122
,
25940
(
2018
).
30.
E. M.
Hutter
,
M. C.
Gélvez-Rueda
,
D.
Bartesaghi
,
F. C.
Grozema
, and
T. J.
Savenije
,
ACS Omega
3
,
11655
(
2018
).
31.
T. J.
Savenije
,
A. J.
Ferguson
,
N.
Kopidakis
, and
G.
Rumbles
,
J. Phys. Chem. C
117
,
24085
(
2013
).
32.
J.
Leveillee
,
G.
Volonakis
, and
F.
Giustino
,
J. Phys. Chem. Lett.
12
,
4474
(
2021
).

Supplementary Material

You do not currently have access to this content.