Compact vacuum systems are key enabling components for cold atom technologies, facilitating extremely accurate sensing applications. There has been important progress toward a truly portable compact vacuum system; however, size, weight, and power consumption can be prohibitively large, optical access may be limited, and active pumping is often required. Here, we present a centiliter-scale ceramic vacuum chamber with He-impermeable viewports and an integrated diffractive optic, enabling robust laser cooling with light from a single polarization-maintaining fiber. A cold atom demonstrator based on the vacuum cell delivers 107 laser-cooled 87Rb atoms per second, using minimal electrical power. With continuous Rb gas emission, active pumping yields a 107 mbar equilibrium pressure, and passive pumping stabilizes to 3×106 mbar with a 17 day time constant. A vacuum cell, with no Rb dispensing and only passive pumping, has currently kept a similar pressure for more than 500 days. The passive-pumping vacuum lifetime is several years, which is estimated from short-term He throughput with many foreseeable improvements. This technology enables wide-ranging mobilization of ultracold quantum metrology.

1.
I.
Dutta
,
D.
Savoie
,
B.
Fang
,
B.
Venon
,
C. G.
Alzar
,
R.
Geiger
, and
A.
Landragin
, “
Continuous cold-atom inertial sensor with 1 nrad/s rotation stability
,”
Phys. Rev. Lett.
116
,
183003
(
2016
).
2.
W. F.
McGrew
,
X.
Zhang
,
R. J.
Fasano
,
S. A.
Schäffer
,
K.
Beloy
,
D.
Nicolodi
,
R. C.
Brown
,
N.
Hinkley
,
G.
Milani
,
M.
Schioppo
,
T. H.
Yoon
, and
A. D.
Ludlow
, “
Atomic clock performance enabling geodesy below the centimetre level
,”
Nature
564
,
87
(
2018
).
3.
C.
Overstreet
,
P.
Asenbaum
,
T.
Kovachy
,
R.
Notermans
,
J. M.
Hogan
, and
M. A.
Kasevich
, “
Effective inertial frame in an atom interferometric test of the equivalence principle
,”
Phys. Rev. Lett.
120
,
183604
(
2018
).
4.
Y.
Bidel
,
N.
Zahzam
,
C.
Blanchard
,
A.
Bonnin
,
M.
Cadoret
,
A.
Bresson
,
D.
Rouxel
, and
M.
Lequentrec-Lalancette
, “
Absolute marine gravimetry with matter-wave interferometry
,”
Nat. Commun.
9
,
627
(
2018
).
5.
L.
Liu
,
D.-S.
,
W.-B.
Chen
,
T.
Li
,
Q.-Z.
Qu
,
B.
Wang
,
L.
Li
,
W.
Ren
,
Z.-R.
Dong
,
J.-B.
Zhao
,
W.-B.
Xia
,
X.
Zhao
,
J.-W.
Ji
,
M.-F.
Ye
,
Y.-G.
Sun
,
Y.-Y.
Yao
,
D.
Song
,
Z.-G.
Liang
,
S.-J.
Hu
,
D.-H.
Yu
,
X.
Hou
,
W.
Shi
,
H.-G.
Zang
,
J.-F.
Xiang
,
X.-K.
Peng
, and
Y.-Z.
Wang
, “
In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms
,”
Nat. Commun.
9
,
2760
(
2018
).
6.
D.
Becker
,
M. D.
Lachmann
,
S. T.
Seidel
,
H.
Ahlers
,
A. N.
Dinkelaker
,
J.
Grosse
,
O.
Hellmig
,
H.
Müntinga
,
V.
Schkolnik
,
T.
Wendrich
,
A.
Wenzlawski
,
B.
Weps
,
R.
Corgier
,
T.
Franz
,
N.
Gaaloul
,
W.
Herr
,
D.
Lüdtke
,
M.
Popp
,
S.
Amri
,
H.
Duncker
,
M.
Erbe
,
A.
Kohfeldt
,
A.
Kubelka-Lange
,
C.
Braxmaier
,
E.
Charron
,
W.
Ertmer
,
M.
Krutzik
,
C.
Lämmerzahl
,
A.
Peters
,
W. P.
Schleich
,
K.
Sengstock
,
R.
Walser
,
A.
Wicht
,
P.
Windpassinger
, and
E. M.
Rasel
, “
Space-borne Bose-Einstein condensation for precision interferometry
,”
Nature
562
,
391
395
(
2018
).
7.
J.
Grotti
,
S.
Koller
,
S.
Vogt
,
S.
Häfner
,
U.
Sterr
,
C.
Lisdat
,
H.
Denker
,
C.
Voigt
,
L.
Timmen
,
A.
Rolland
,
F. N.
Baynes
,
H. S.
Margolis
,
M.
Zampaolo
,
P.
Thoumany
,
M.
Pizzocaro
,
B.
Rauf
,
F.
Bregolin
,
A.
Tampellini
,
P.
Barbieri
,
M.
Zucco
,
G. A.
Costanzo
,
C.
Clivati
,
F.
Levi
, and
D.
Calonico
, “
Geodesy and metrology with a transportable optical clock
,”
Nat. Phys.
14
,
437
441
(
2018
).
8.
D. C.
Aveline
,
J. R.
Williams
,
E. R.
Elliott
,
C.
Dutenhoffer
,
J. R.
Kellogg
,
J. M.
Kohel
,
N. E.
Lay
,
K.
Oudrhiri
,
R. F.
Shotwell
,
N.
Yu
, and
R. J.
Thompson
, “
Observation of Bose-Einstein condensates in an Earth-Orbiting Research Lab
,”
Nature
582
,
193
197
(
2020
).
9.
M.
Takamoto
,
I.
Ushijima
,
N.
Ohmae
,
T.
Yahagi
,
K.
Kokado
,
H.
Shinkai
, and
H.
Katori
, “
Test of general relativity by a pair of transportable optical lattice clocks
,”
Nat. Photonics
14
,
411
415
(
2020
).
10.
E. L.
Raab
,
M.
Prentiss
,
A.
Cable
,
S.
Chu
, and
D. E.
Pritchard
, “
Trapping of neutral sodium atoms with radiation pressure
,”
Phys. Rev. Lett.
59
,
2631
2634
(
1987
).
11.
C.
Monroe
,
W.
Swann
,
H.
Robinson
, and
C.
Wieman
, “
Very cold trapped atoms in a vapor cell
,”
Phys. Rev. Lett.
65
,
1571
1574
(
1990
).
12.
J. F.
Barry
,
D. J.
McCarron
,
E. B.
Norrgard
,
M. H.
Steinecker
, and
D.
DeMille
, “
Magneto-optical trapping of a diatomic molecule
,”
Nature
512
,
286
289
(
2014
).
13.
F.
Lienhart
,
S.
Boussen
,
O.
Carraz
,
N.
Zahzam
,
Y.
Bidel
, and
A.
Bresson
, “
Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm
,”
Appl. Phys. B
89
,
177
180
(
2007
).
14.
S. S.
Sané
,
S.
Bennetts
,
J. E.
Debs
,
C. C. N.
Kuhn
,
G. D.
McDonald
,
P. A.
Altin
,
J. D.
Close
, and
N. P.
Robins
, “
11W narrow linewidth laser source at 780 nm for laser cooling and manipulation of rubidium
,”
Opt. Express
20
,
8915
(
2012
).
15.
T.
Lévèque
,
L.
Antoni-Micollier
,
B.
Faure
, and
J.
Berthon
, “
A laser setup for rubidium cooling dedicated to space applications
,”
Appl. Phys. B
116
,
997
1004
(
2014
).
16.
J.
Pahl
,
A. N.
Dinkelaker
,
C.
Grzeschik
,
J.
Kluge
,
M.
Schiemangk
,
A.
Wicht
,
A.
Peters
, and
M.
Krutzik
, “
Compact and robust diode laser system technology for dual-species ultracold atom experiments with rubidium and potassium in microgravity
,”
Appl. Opt.
58
,
5456
(
2019
).
17.
E. D.
Gaetano
,
S.
Watson
,
E.
McBrearty
,
M.
Sorel
, and
D. J.
Paul
, “
Sub-megahertz linewidth 780.24 nm distributed feedback laser for 87Rb applications
,”
Opt. Lett.
45
,
3529
(
2020
).
18.
N. Welch and M. Fromhold, private communication (January 2018).
19.
K. I.
Lee
,
J. A.
Kim
,
H. R.
Noh
, and
W.
Jhe
, “
Single-beam atom trap in a pyramidal and conical hollow mirror
,”
Opt. Lett.
21
,
1177
(
1996
).
20.
M.
Vangeleyn
,
P. F.
Griffin
,
E.
Riis
, and
A. S.
Arnold
, “
Single-laser, one beam, tetrahedral magneto-optical trap
,”
Opt. Express
17
,
13601
(
2009
).
21.
M.
Vangeleyn
,
P. F.
Griffin
,
E.
Riis
, and
A. S.
Arnold
, “
Laser cooling with a single laser beam and a planar diffractor
,”
Opt. Lett.
35
,
3453
(
2010
).
22.
Y.-Y.
Jau
,
H.
Partner
,
P. D. D.
Schwindt
,
J. D.
Prestage
,
J. R.
Kellogg
, and
N.
Yu
, “
Low-power, miniature 171Yb ion clock using an ultra-small vacuum package
,”
Appl. Phys. Lett.
101
,
253518
(
2012
).
23.
P. D. D.
Schwindt
,
Y.-Y.
Jau
,
H.
Partner
,
A.
Casias
,
A. R.
Wagner
,
M.
Moorman
,
R. P.
Manginell
,
J. R.
Kellogg
, and
J. D.
Prestage
, “
A highly miniaturized vacuum package for a trapped ion atomic clock
,”
Rev. Sci. Instrum.
87
,
053112
(
2016
).
24.
D. R.
Scherer
,
D. B.
Fenner
, and
J. M.
Hensley
, “
Characterization of alkali metal dispensers and non-evaporable getter pumps in ultrahigh vacuum systems for cold atomic sensors
,”
J. Vac. Sci. Technol. A
30
,
061602
(
2012
).
25.
J. A.
Rushton
,
M.
Aldous
, and
M. D.
Himsworth
, “
Contributed review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology
,”
Rev. Sci. Instrum.
85
,
121501
(
2014
).
26.
A.
Basu
and
L. F.
Velásquez-García
, “
An electrostatic ion pump with nanostructured Si field emission electron source and Ti particle collectors for supporting an ultra-high vacuum in miniaturized atom interferometry systems
,”
J. Micromech. Microeng.
26
,
124003
(
2016
).
27.
J. P.
McGilligan
,
K. R.
Moore
,
A.
Dellis
,
G. D.
Martinez
,
E.
de Clercq
,
P. F.
Griffin
,
A. S.
Arnold
,
E.
Riis
,
R.
Boudot
, and
J.
Kitching
, “
Laser cooling in a chip-scale platform
,”
Appl. Phys. Lett.
117
,
054001
(
2020
).
28.
B. J.
Little
,
G. W.
Hoth
,
J.
Christensen
,
C.
Walker
,
D. J. D.
Smet
,
G. W.
Biedermann
,
J.
Lee
, and
P. D. D.
Schwindt
, “
A passively pumped vacuum package sustaining cold atoms for more than 200 days
,”
AVS Quantum Sci.
3
,
035001
(
2021
).
29.
R.
Boudot
,
J. P.
McGilligan
,
K. R.
Moore
,
V.
Maurice
,
G. D.
Martinez
,
A.
Hansen
,
E.
de Clercq
, and
J.
Kitching
, “
Enhanced observation time of magneto-optical traps using micro-machined non-evaporable getter pumps
,”
Sci. Rep.
10
,
16590
(
2020
).
30.
A. T.
Dellis
,
V.
Shah
,
E. A.
Donley
,
S.
Knappe
, and
J.
Kitching
, “
Low helium permeation cells for atomic microsystems technology
,”
Opt. Lett.
41
,
2775
2778
(
2016
).
31.
C. C.
Nshii
,
M.
Vangeleyn
,
J. P.
Cotter
,
P. F.
Griffin
,
E. A.
Hinds
,
C. N.
Ironside
,
P.
See
,
A. G.
Sinclair
,
E.
Riis
, and
A. S.
Arnold
, “
A surface-patterned chip as a strong source of ultracold atoms for quantum technologies
,”
Nat. Nanotechnol.
8
,
321
324
(
2013
).
32.
J. P.
McGilligan
,
P. F.
Griffin
,
R.
Elvin
,
S. J.
Ingleby
,
E.
Riis
, and
A. S.
Arnold
, “
Grating chips for quantum technologies
,”
Sci. Rep.
7
,
384
(
2017
).
33.
R.
Elvin
,
G. W.
Hoth
,
M.
Wright
,
B.
Lewis
,
J. P.
McGilligan
,
A. S.
Arnold
,
P. F.
Griffin
, and
E.
Riis
, “
Cold-atom clock based on a diffractive optic
,”
Opt. Express
27
,
38359
(
2019
).
34.
R. N.
Kohn
,
M. S.
Bigelow
,
M.
Spanjers
,
B. K.
Stuhl
,
B. L.
Kasch
,
S. E.
Olson
,
E. A.
Imhof
,
D. A.
Hostutler
, and
M. B.
Squires
, “
Clean, robust alkali sources by intercalation within highly oriented pyrolytic graphite
,”
Rev. Sci. Instrum.
91
,
035108
(
2020
).
35.
J. P.
McGilligan
,
K. R.
Moore
,
S.
Kang
,
R.
Mott
,
A.
Mis
,
C.
Roper
,
E. A.
Donley
, and
J.
Kitching
, “
Dynamic characterization of an alkali-ion battery as a source for laser-cooled atoms
,”
Phys. Rev. Appl.
13
,
044038
(
2020
).
36.
C.
Li
,
X.
Chai
,
B.
Wei
,
J.
Yang
,
A.
Daruwalla
,
F.
Ayazi
, and
C.
Raman
, “
Cascaded collimator for atomic beams traveling in planar silicon devices
,”
Nat. Commun.
10
,
1831
(
2019
).
37.
J. P.
McGilligan
,
P. F.
Griffin
,
E.
Riis
, and
A. S.
Arnold
, “
Diffraction-grating characterization for cold-atom experiments
,”
J. Opt. Soc. Am. B
33
,
1271
(
2016
).
38.
J. P.
Cotter
,
J. P.
McGilligan
,
P. F.
Griffin
,
I. M.
Rabey
,
K.
Docherty
,
E.
Riis
,
A. S.
Arnold
, and
E. A.
Hinds
, “
Design and fabrication of diffractive atom chips for laser cooling and trapping
,”
Appl. Phys. B
122
,
172
(
2016
).
39.
J. P.
McGilligan
,
P. F.
Griffin
,
E.
Riis
, and
A. S.
Arnold
, “
Phase-space properties of magneto-optical traps utilising micro-fabricated gratings
,”
Opt. Express
23
,
8948
(
2015
).
40.
The timescales for vacuum collisions are many orders of magnitude longer than the timescale of the laser cooling dynamics.
41.
The ion pump has nominal speed 0.2 L/s, and the NEG is the electrically activated SAES Getters St-172. We suspect 5–10 times the NEG material would be useful.
42.
T.
Arpornthip
,
C. A.
Sackett
, and
K. J.
Hughes
, “
Vacuum-pressure measurement using a magneto-optical trap
,”
Phys. Rev. A
85
,
033420
(
2012
).
43.
R. W. G.
Moore
,
L. A.
Lee
,
E. A.
Findlay
,
L.
Torralbo-Campo
,
G. D.
Bruce
, and
D.
Cassettari
, “
Measurement of vacuum pressure with a magneto-optical trap: A pressure-rise method
,”
Rev. Sci. Instrum.
86
,
093108
(
2015
).
44.
J.
Scherschligt
,
J. A.
Fedchak
,
Z.
Ahmed
,
D. S.
Barker
,
K.
Douglass
,
S.
Eckel
,
E.
Hanson
,
J.
Hendricks
,
N.
Klimov
,
T.
Purdy
,
J.
Ricker
,
R.
Singh
, and
J.
Stone
, “
Review article: Quantum-based vacuum metrology at the National Institute of Standards and Technology
,”
J. Vac. Sci. Technol. A
36
,
040801
(
2018
).
45.
Similar results are also obtained by fitting the background-subtracted fluorescence data with (NeqN1)(1et/τ)+N1 to determine Neq. Data at early times are omitted to find τ, and N1 is solely a fit parameter.
46.
We used a lower current for the dispensers than the data shown in Fig. 1(a) to keep PRb low and have minimal error on Pbk in Eq. (2).
47.
J.
Keaveney
,
C. S.
Adams
, and
I. G.
Hughes
, “
ElecSus: Extension to arbitrary geometry magneto-optics
,”
Comp. Phys. Commun.
224
,
311
324
(
2018
).
48.
This capture time is in reasonable agreement with a simple Doppler cooling model39 that has been enhanced using stochastic processes.
49.
Alternatively, constant αPRb can be more simply reconciled if one allows a τ offset for the minimum lifetime τC=16 ms at which MOTs are obtained. A linear fit in Fig. 2(a) gives αPRb=Neq/(ττC).
50.
We note that the pressure decay coefficient P0=(τCγ)1 links τC and γ—enabling a clear determination of one parameter provided independent measurement of the other.
51.
P. Z.
Sun
,
Q.
Yang
,
W. J.
Kuang
,
Y. V.
Stebunov
,
W. Q.
Xiong
,
J.
Yu
,
R. R.
Nair
,
M. I.
Katsnelson
,
S. J.
Yuan
,
I. V.
Grigorieva
,
M.
Lozada-Hidalgo
,
F. C.
Wang
, and
A. K.
Geim
, “
Limits on gas impermeability of graphene
,”
Nature
579
,
229
232
(
2020
).
52.
X.
Wu
,
F.
Zi
,
J.
Dudley
,
R. J.
Bilotta
,
P.
Canoza
, and
H.
Müller
, “
Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap
,”
Optica
4
,
1545
(
2017
).
53.
B.
Pelle
,
R.
Szmuk
,
B.
Desruelle
,
D.
Holleville
, and
A.
Landragin
, “
Cold-atom-based commercial microwave clock at the 10–15 level
,” in
IEEE International Frequency Control Symposium (IFCS)
(
IEEE
,
2018
).
54.
A. V.
Rakholia
,
H. J.
McGuinness
, and
G. W.
Biedermann
, “
Dual-axis high-data-rate atom interferometer via cold ensemble exchange
,”
Phys. Rev. Appl.
2
,
054012
(
2014
).
55.
Y.-J.
Chen
,
A.
Hansen
,
G. W.
Hoth
,
E.
Ivanov
,
B.
Pelle
,
J.
Kitching
, and
E. A.
Donley
, “
Single-source multiaxis cold-atom interferometer in a centimeter-scale cell
,”
Phys. Rev. Appl.
12
,
014019
(
2019
).
56.
J. D.
Elgin
,
T. P.
Heavner
,
J.
Kitching
,
E. A.
Donley
,
J.
Denney
, and
E. A.
Salim
, “
A cold-atom beam clock based on coherent population trapping
,”
Appl. Phys. Lett.
115
,
033503
(
2019
).
57.
G.
Santarelli
,
P.
Laurent
,
P.
Lemonde
,
A.
Clairon
,
A. G.
Mann
,
S.
Chang
,
A. N.
Luiten
, and
C.
Salomon
, “
Quantum projection noise in an atomic fountain: A high stability cesium frequency standard
,”
Phys. Rev. Lett.
82
,
4619
4622
(
1999
).
58.
F.
Esnault
,
N.
Rossetto
,
D.
Holleville
,
J.
Delporte
, and
N.
Dimarcq
, “
HORACE: A compact cold atom clock for Galileo
,”
Adv. Space Res.
47
,
854
858
(
2011
).
59.
Z. L.
Newman
,
V.
Maurice
,
T.
Drake
,
J. R.
Stone
,
T. C.
Briles
,
D. T.
Spencer
,
C.
Fredrick
,
Q.
Li
,
D.
Westly
,
B. R.
Ilic
,
B.
Shen
,
M.-G.
Suh
,
K. Y.
Yang
,
C.
Johnson
,
D. M. S.
Johnson
,
L.
Hollberg
,
K. J.
Vahala
,
K.
Srinivasan
,
S. A.
Diddams
,
J.
Kitching
,
S. B.
Papp
, and
M. T.
Hummon
, “
Architecture for the photonic integration of an optical atomic clock
,”
Optica
6
,
680
(
2019
).
60.
S.
Abend
,
M.
Gebbe
,
M.
Gersemann
,
H.
Ahlers
,
H.
Müntinga
,
E.
Giese
,
N.
Gaaloul
,
C.
Schubert
,
C.
Lämmerzahl
,
W.
Ertmer
,
W.
Schleich
, and
E.
Rasel
, “
Atom-chip fountain gravimeter
,”
Phys. Rev. Lett.
117
,
203003
(
2016
).
61.
V.
Xu
,
M.
Jaffe
,
C. D.
Panda
,
S. L.
Kristensen
,
L. W.
Clark
, and
H.
Müller
, “
Probing gravity by holding atoms for 20 seconds
,”
Science
366
,
745
749
(
2019
).
62.
C. J. E.
Straatsma
,
M. K.
Ivory
,
J.
Duggan
,
J.
Ramirez-Serrano
,
D. Z.
Anderson
, and
E. A.
Salim
, “
On-chip optical lattice for cold atom experiments
,”
Opt. Lett.
40
,
3368
(
2015
).
63.
A. D.
Tranter
,
H. J.
Slatyer
,
M. R.
Hush
,
A. C.
Leung
,
J. L.
Everett
,
K. V.
Paul
,
P.
Vernaz-Gris
,
P. K.
Lam
,
B. C.
Buchler
, and
G. T.
Campbell
, “
Multiparameter optimisation of a magneto-optical trap using deep learning
,”
Nat. Commun.
9
,
4360
(
2018
).
64.
M.
Cao
,
F.
Hoffet
,
S.
Qiu
,
A. S.
Sheremet
, and
J.
Laurat
, “
Efficient reversible entanglement transfer between light and quantum memories
,”
Optica
7
,
1440
(
2020
).
65.
H.
Bernien
,
S.
Schwartz
,
A.
Keesling
,
H.
Levine
,
A.
Omran
,
H.
Pichler
,
S.
Choi
,
A. S.
Zibrov
,
M.
Endres
,
M.
Greiner
,
V.
Vuletić
, and
M. D.
Lukin
, “
Probing many-body dynamics on a 51-atom quantum simulator
,”
Nature
551
,
579
584
(
2017
).
66.
J.
Zhang
,
G.
Pagano
,
P. W.
Hess
,
A.
Kyprianidis
,
P.
Becker
,
H.
Kaplan
,
A. V.
Gorshkov
,
Z.-X.
Gong
, and
C.
Monroe
, “
Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator
,”
Nature
551
,
601
604
(
2017
).
67.
A.
Arnold
,
O.
Burrow
,
P.
Griffin
, and
E.
Riis
, “
Stand-alone vacuum cell for compact ultracold quantum technologies
,” University of Strathclyde. .
You do not currently have access to this content.