The photoreduction of carbon dioxide (CO2) to solar fuels is meaningful in many fields relevant to CO2 emission control, solar energy conversion and storage, carbon-neutral fuel production, CO2 conversion, and carbon cycle closure. The CO2 photoreduction on TiO2 nanotube arrays using concentrated sunlight under favorable photothermal conditions is considered in this work. TiO2 is a typical catalyst for the process while the reaction rate is still kept at rather poor level, partly because of the mild reaction conditions employed. In this study, the TiO2 photocatalyst was shaped as nanotube arrays and the current process limitations were tackled by raising the incident light intensity and reaction temperature by using concentrating solar light (concentration ratio between 200 and 800), while jointly increasing the achievable H2O and CO2 partial pressure. The results showed that the rate of CO2 photoreduction on the TiO2 nanotube array was increased by hundred times. The use of concentrated solar light heightens the hydrocarbons production rate to thousand μmol g−1 h−1 and enriches hydrocarbons products to CH4, C2H4, and C2H6. The favorable effects on enhancing the catalyst performance were ascribed to the intensification of reaction conditions. This noticeable breakthrough may represent an important step forward in the deployment of CO2 photoreduction technologies.

1.
Z. Y.
Fu
,
Q.
Yang
,
Z.
Liu
,
F.
Chen
,
F. B.
Yao
,
T.
Xie
,
Y.
Zhong
,
D. B.
Wang
,
J.
Li
,
X. M.
Li
, and
G. M.
Zeng
, “
Photocatalytic conversion of carbon dioxide: From products to design the catalysts
,”
J. CO2 Util.
34
,
63
73
(
2019
).
2.
X.
Li
,
J. G.
Yu
,
M.
Jaroniec
, and
X. B.
Chen
, “
Cocatalysts for selective photoreduction of CO2 into solar fuels
,”
Chem. Rev.
119
,
3962
4179
(
2019
).
3.
S. N.
Habisreutinger
,
L.
Schmidtmende
, and
J. K.
Stolarczyk
, “
Photocatalytic reduction of CO2 on TiO2 and other semiconductors
,”
Angew. Chem. Int. Ed.
52
,
7372
7408
(
2013
).
4.
E. V.
Kondratenko
,
G.
Mul
, and
J.
Baltrusaitis
, “
Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes
,”
Energy Environ. Sci.
6
,
3112
3135
(
2013
).
5.
Y.
Izumi
, “
Recent advances (2012–2015) in the photocatalytic conversion of carbon dioxide to fuels using solar energy: Feasibilty for a new energy
,” in
Advances in CO₂ Capture, Sequestration, and Conversion
(
American Chemical Society
,
Washington
,
2015
), pp.
1
46
.
6.
X. X.
Chang
,
T.
Wang
, and
J. L.
Gong
, “
CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts
,”
Energy Environ. Sci.
9
,
2177
2193
(
2016
).
7.
Y. X.
Fang
and
X. C.
Wang
, “
Photocatalytic CO2 conversion by polymeric carbon nitrides
,”
Chem. Commun.
54
,
5674
5687
(
2018
).
8.
X. C.
Jiao
,
K.
Zheng
,
L.
Liang
,
X. D.
Li
,
Y. F.
Sun
, and
Y.
Xie
, “
Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction
,”
Chem. Soc. Rev.
49
,
6592
6604
(
2020
).
9.
W. H.
Zhang
,
A. R.
Mohamed
, and
W. J.
Ong
, “
Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now?
,”
Angew. Chem. Int. Ed.
59
,
22894
22915
(
2020
).
10.
A.
Fujishima
and
K.
Honda
, “
Electrochemical photolysis of water at a semiconductor electrode
,”
Nature
238
,
37
38
(
1972
).
11.
I.
Tooru
,
F.
Akira
,
K.
Satoshi
, and
A.
Honda
, “
Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders
,”
Nature
277
,
637
638
(
1979
).
12.
N. G.
Moustakas
and
J.
Strunk
, “
Photocatalytic CO2 reduction on TiO2-based materials under controlled reaction conditions: Systematic insights from a literature study
,”
Chem. Eur. J.
24
,
12739
11274
(
2018
).
13.
S. C.
Roy
,
O. K.
Varghese
,
M.
Paulose
, and
C. A.
Grimes
, “
Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons
,”
ACS Nano
4
,
1259
1278
(
2010
).
14.
K.
Teramura
and
T.
Tanaka
, “
Necessary and sufficient conditions for the successful three-phase photocatalytic reduction of CO2 by H2O over heterogeneous photocatalysts
,”
Phys. Chem. Chem. Phys.
20
,
8423
84316
(
2018
).
15.
V. H.
Nguyen
and
J. C. S.
Wu
, “
Recent developments in the design of photoreactors for solar energy conversion from water splitting and CO2 reduction
,”
Appl. Catal., A
550
,
122
141
(
2018
).
16.
A. A.
Khan
and
M.
Tahir
, “
Recent advancements in engineering approach towards design of photoreactors for selective photocatalytic CO2 reduction to renewable fuels
,”
J. CO2 Util.
29
,
205
239
(
2019
).
17.
M.
Ghoussou
,
M.
Xia
,
P. N.
Duchesne
,
D.
Segal
, and
G.
Ozin
, “
Principles of photothermal gas-phase heterogeneous CO2 catalysis
,”
Energy Environ. Sci.
12
,
1122
1144
(
2019
).
18.
S. S.
Han
,
Y. F.
Chen
,
S.
Abanades
, and
Z. K.
Zhang
, “
Improving photoreduction of CO2 with water to CH4 in a novel concentrated solar reactor
,”
J. Energy Chem.
26
,
743
749
(
2017
).
19.
A.
Kafizas
,
X. L.
Wang
,
S. R.
Pendlebury
,
P.
Barnes
,
M.
Ling
,
C.
Sotelo-Vazquez
,
R.
Quesada-Cabrera
,
C.
Li
,
I. P.
Parkin
, and
J. R.
Durrant
, “
Where do photogenerated holes go in anatase:rutile TiO2? A transient absorption spectroscopy study of charge transfer and lifetime
,”
J. Phys. Chem. A
120
,
715
723
(
2016
).
20.
Y. Y.
Gao
,
J.
Zhu
,
H. Y.
An
,
P. L.
Yan
,
B. K.
Huang
,
R. T.
Chen
,
F. T.
Fan
, and
C.
Li
, “
Directly probing charge separation at interface of TiO2 phase junction
,”
J. Phys. Chem. Lett.
8
,
1419
1423
(
2017
).
21.
K.
Li
,
C.
Teng
,
S.
Wang
, and
Q. H.
Min
, “
Recent advances in TiO2-based heterojunctions for photocatalytic CO2 reduction with water oxidation: A review
,”
Front. Chem.
9
,
637501
(
2021
).
22.
A.
Li
,
Z.
Wang
,
H.
Yin
,
S.
Wang
,
P.
Yan
,
B.
Huang
,
X.
Wang
,
R.
Li
,
X.
Zong
,
H.
Han
, and
C.
Li
, “
Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting
,”
Chem. Sci.
7
,
6076
6082
(
2016
).
23.
S.
Delavari
and
N. A. S.
Amin
, “
Photocatalytic conversion of CO2 and CH4 over immobilized titania nanoparticles coated on mesh: Optimization and kinetic study
,”
Appl. Energy
162
,
1171
1185
(
2016
).
24.
Y. X.
Deng
, “
Developing a Langmuir-type excitation equilibrium equation to describe the effect of light intensity on the kinetics of the photocatalytic oxidation
,”
Chem. Eng. J.
337
,
220
227
(
2018
).
You do not currently have access to this content.