Solid solutions between ZnSe and Cu(In, Ga)Se2 (ZnSe:CIGS) have promising properties as photocathodes for solar hydrogen production from water, such as a long absorption edge of about 900 nm and a large driving force for reaction, >0.9 V, originated by a deep valence band maximum of 1.0–1.1 V vs normal hydrogen electrode (NHE). However, their performance is limited with an incident photon-to-current conversion efficiency (IPCE) of 65% at 400 nm and a half-cell solar-to-hydrogen energy conversion efficiency (HC-STH) of 3.6% so far. Te addition during ZnSe:CIGS thin film deposition by vacuum co-evaporation clearly decreased the optimal deposition temperature from 450 to 380 °C and resulted in columnar shaped grains of submicrometer size in diameter and with almost no grain boundary between the film surface and the backside electrode of Mo, which is significantly larger than the case of without Te addition. Interestingly, a Ga/In compositional ratio gradient was further introduced to the depth profile, which can facilitate charge separation. Structural characterizations using XRD and cross-sectional transmission electron microscopy revealed that the composition gradient was mainly formed by the diffusion of In through grain boundaries in the Ga-rich layer, and thus, the mixing between the Ga-rich and In-rich layers was more significant at a lower deposition temperature owing to the smaller grain size. The photocathode fabricated from the ZnSe:CIGS thin film with the composition gradient showed a very high IPCE of 89% at 540 nm and 0 V vs the reversible hydrogen electrode, and HC-STH of 3.7%, which is higher than values reported thus far. In conclusion, it is clarified that the potential gradient, which can be introduced by composition gradient, is beneficial for photoelectrodes and photocatalysts to achieve higher performance.

1.
J. A.
Turner
,
Science
305
,
972
974
(
2004
).
2.
N. S.
Lewis
and
D. G.
Nocera
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
15729
15735
(
2006
).
3.
C.
Liu
,
F.
Li
,
L. P.
Ma
, and
H. M.
Cheng
,
Adv. Mater.
22
,
E28
E62
(
2010
).
4.
R.
Metkemeijer
and
P.
Achard
,
J. Power Sources
49
,
271
282
(
1994
).
5.
A.
Fujishima
and
K.
Honda
,
Nature
238
,
37
38
(
1972
).
6.
A.
Kudo
and
Y.
Miseki
,
Chem. Soc. Rev.
38
,
253
278
(
2009
).
7.
K.
Maeda
and
K.
Domen
,
J. Phys. Chem. Lett.
1
,
2655
2661
(
2010
).
8.
H.
Kaneko
,
T.
Minegishi
,
M.
Nakabayashi
,
N.
Shibata
,
Y.
Kuang
,
T.
Yamada
, and
K.
Domen
,
Adv. Funct. Mater.
26
,
4570
4577
(
2016
).
9.
H.
Kaneko
,
T.
Minegishi
,
M.
Nakabayashi
,
N.
Shibata
, and
K.
Domen
,
Angew. Chem., Int. Ed.
55
,
15329
15333
(
2016
).
10.
T.
Higashi
,
H.
Kaneko
,
T.
Minegishi
,
H.
Kobayashi
,
M.
Zhong
,
Y.
Kuang
,
T.
Hisatomi
,
M.
Katayama
,
T.
Takata
,
H.
Nishiyama
,
T.
Yamada
, and
K.
Domen
,
Chem. Commun.
53
,
11674
11677
(
2017
).
11.
Y.
Kageshima
,
T.
Minegishi
,
Y.
Goto
,
H.
Kaneko
, and
K.
Domen
,
Sustainable Energy Fuels
2
,
1957
1965
(
2018
).
12.
Y.
Goto
,
T.
Minegishi
,
Y.
Kageshima
,
T.
Higashi
,
H.
Kaneko
,
Y.
Kuang
,
M.
Nakabayashi
,
N.
Shibata
,
H.
Ishihara
,
T.
Hayashi
,
A.
Kudo
,
T.
Yamada
, and
K.
Domen
,
J. Mater. Chem. A
5
,
21242
21248
(
2017
).
13.
H.
Kaneko
,
T.
Minegishi
,
T.
Higashi
,
M.
Nakabayashi
,
N.
Shibata
, and
K.
Domen
,
Small Methods
2
,
1800018
(
2018
).
14.
H.
Kaneko
,
T.
Minegishi
,
H.
Kobayashi
,
Y.
Kuang
, and
K.
Domen
,
J. Chem. Phys.
150
,
041713
(
2019
).
15.
Y.
Kageshima
,
Y.
Goto
,
H.
Kaneko
,
M.
Nakabayashi
,
N.
Shibata
,
K.
Domen
, and
T.
Minegishi
,
ChemCatChem
11
,
4266
4271
(
2019
).
16.
Y.
Kageshima
,
T.
Minegishi
,
S.
Sugisaki
,
Y.
Goto
,
H.
Kaneko
,
M.
Nakabayashi
,
N.
Shibata
, and
K.
Domen
,
ACS Appl. Mater. Interfaces
10
,
44396
44402
(
2018
).
17.
F.
Takagi
,
Y.
Kageshima
,
K.
Teshima
,
K.
Domen
, and
H.
Nishikiori
,
Sustainable Energy Fuels
5
,
412
423
(
2021
).
18.
Y.
Kageshima
,
T.
Fujita
,
F.
Takagi
,
T.
Minegishi
,
K.
Teshima
,
K.
Domen
,
Y.
Amano
, and
H.
Nishikiori
,
ChemElectroChem
6
,
4859
4866
(
2019
).
19.
T.
Minegishi
,
N.
Nishimura
,
J.
Kubota
, and
K.
Domen
,
Chem. Sci.
4
,
1120
1124
(
2013
).
20.
K.
Tang
,
S.
Gu
,
K.
Wu
,
S.
Zhu
,
J.
Ye
,
R.
Zhang
, and
Y.
Zheng
,
Appl. Phys. Lett.
96
,
242101
(
2010
).
21.
S.
Park
,
T.
Minegishi
,
D.
Oh
,
H.
Lee
,
T.
Taishi
,
J.
Park
,
M.
Jung
,
J.
Chang
,
I.
Im
,
J.
Ha
,
S.
Hong
,
I.
Yonenaga
,
T.
Chikyow
, and
T.
Yao
,
Appl. Phys. Express
3
,
031103
(
2010
).
22.
D.
Yokoyama
,
T.
Minegishi
,
K.
Maeda
,
M.
Katayama
,
J.
Kubota
,
A.
Yamada
,
M.
Konagai
, and
K.
Domen
,
Electrochem. Commun.
12
,
851
853
(
2010
).
23.
H.
Kumagai
,
T.
Minegishi
,
N.
Sato
,
T.
Yamada
,
J.
Kubota
, and
K.
Domen
,
J. Mater. Chem. A
3
,
8300
8307
(
2015
).

Supplementary Material

You do not currently have access to this content.