Green hydrogen is currently enjoying a worldwide momentum due to its potential in supporting the United Nations Sustainable Development Goals. It is one of key technologies toward the establishment of a global low-carbon energy infrastructure. As a viable solution to achieve green hydrogen from renewable sources such as wind and solar powers, the process of proton exchange membrane (PEM) water electrolysis enables scalable stacked devices and systems for high pressure hydrogen production. By developing a catalyst-coated proton exchange membrane, we constructed membrane electrode assemblies (MEAs) and assembled them into a five-cell stack device to optimize the materials and components. After device characterization and optimization, a 20 kW PEM water electrolysis system was built, which, under high pressure operating conditions, exhibited favorable hydrogen production performance with 82.9% energy efficiency at the current density of 1000 mA/cm2 and reaction temperature of 70 °C. The resulting hydrogen production rate of the system with catalyst-coated membranes reached 3.09 N m3/h, while the power consumption for hydrogen production was 4.39 kWh/N m3. The results indicate the feasibility of PEM water electrolysis technology for green hydrogen production, for which we envision development into commercial applications in the near future.

1.
Study Task Force of the Hydrogen Council
,
Hydrogen Scaling up: A Sustainable Pathway for the Global Energy Transition
(
Hydrogen Council
,
2017
).
2.
IEA
, “
The future of hydrogen: Seizing today's opportunities
,” Report (
IEA
,
Japan
,
2019
).
3.
S. E.
Hosseini
and
M. A.
Wahid
,
Renewable Sustainable Energy Rev.
57
,
850
866
(
2016
).
4.
Y.
Huang
and
S.
Liu
,
IEEE Access
8
,
171968
(
2020
).
5.
H. T.
Arat
,
M. K.
Baltacloglu
,
B.
Tanc
,
M. G.
Surer
, and
l
Dincer
,
Int. J. Energy Res.
44
,
588
(
2020
).
6.
M. A.
Pellow
,
C. J. M.
Emmott
,
C. J.
Barnhart
, and
S. M.
Benson
,
Energy Environ. Sci.
8
,
1938
(
2015
).
7.
A.
Mayyas
,
M.
Ruth
,
B.
Pivovar
,
G.
Bender
, and
K.
Wipke
, “
Manufacturing cost analysis for proton exchange membrane water electrolyzers
,”
Report No. NREL/TP-6A20-72740
(
National Renewable Energy Laboratory
,
Golden, CO
,
2019
).
8.
A. V.
Abad
and
P. E.
Dodds
,
Energy Policy
138
,
111300
(
2020
).
9.
S. A.
Grigoriev
,
V. I.
Porembsky
, and
V. N.
Fateev
,
Int. J. Hydrogen Energy
31
,
171
(
2006
).
10.
M.
Yasutake
,
D.
Kawachino
, and
Z. Y.
Noda
,
J. Electrochem. Soc.
167
,
124523
(
2020
).
11.
Z.
Kang
,
S. M.
Alia
,
J.
Young
, and
G.
Bener
,
Electrochim. Acta
354
,
136641
(
2020
).
12.
P. J.
Rheinlander
and
J.
Durst
,
J. Electrochem. Soc.
168
,
024511
(
2021
).
13.
C.
Rozain
,
E.
Mayousse
,
N.
Guillet
, and
P.
Millet
,
Appl. Catal., B
182
,
123
(
2016
).
14.
X.
Wang
,
M. T.
Swihart
, and
G.
Wu
,
Nat. Catal.
2
,
578
(
2019
).
15.
E.
Amores
,
A.
Contreras
,
L.
Rodríguez
, and
M.
Carrero
, “
Flow field optimization for PEM water electrolysis cell using computational fluid dynamic simulations
,” in
European Hydrogen Energy Conference Spain
(
2018
).
16.
H.
Ito
,
T.
Maeda
,
A.
Nakano
,
Y.
Hasegawaa
,
N.
Yokoi
,
C.
Hwang
,
M.
Ishida
,
A.
Kato
, and
T.
Yoshida
,
Int. J. Hydrogen Energy
35
,
9550
(
2010
).
17.
G.
Su
,
D.
Yang
,
Q.
Xiao
,
H.
Dai
, and
C.
Zhang
,
Renewable Energy
173
,
498
(
2021
).
18.
Y.
Li
,
X.
Zhao
,
Z.
Liu
,
Y.
Li
,
W.
Chen
, and
Q.
Li
,
Int. J. Hydrogen Energy
40
,
7361
(
2015
).
19.
C.
Dai
,
Q.
Shi
,
W.
Chen
,
Y.
Li
,
Z.
Liu
, and
Q.
Li
,
Proc. CSEE
36
(
05
),
1289
1302
(
2016
).
20.
P.
Liu
,
S.
Xu
,
J.
Fu
, and
C.
Liu
,
Int. J. Hydrogen Energy
45
,
26490
(
2020
).
21.
K. E.
Ayers
,
E. B.
Anderson
,
C.
Capuano
,
B.
Carter
,
L.
Dalton
,
G.
Hanlon
 et al,
ECS Trans.
33
,
3
(
2019
).
22.
S. A.
Grigoriev
,
A. A.
Kalinnikov
,
P.
Millet
,
V. I.
Porembsky
, and
V. N.
Fateev
,
J. Appl. Electrochem.
40
,
921
(
2010
).
23.
F. N.
Khatib
,
T.
Wilberforce
,
O.
Ijaodola
,
E.
Ogungbemi
,
Z.
El-Hassan
,
A.
Durrant
,
J.
Thompson
, and
A. G.
Olabi
,
Renewable Sustainable Energy Rev.
111
,
1–14
(
2019
).
You do not currently have access to this content.