Tin oxides are the most promising electron transport layers in perovskite solar cells. An ambipolar carrier transport property has been recently demonstrated which enables a simple interconnection structure for all-perovskite tandem solar cells. However, the underlying mechanism for its ambipolar behavior is unclear, which cannot be explained by the intrinsic defects in SnO2−x. Here, by using density functional theory calculations, we unveil the origin of the ambipolar carrier transport of non-stoichiometry SnO2−x with a structure of SnO embedded in the SnO2 matrix. The hybridization of O 2p and Sn 5s orbitals of SnO introduces mid-gap states in the bandgap of SnO2, enabling hole transport property for SnO2−x when x is > 0.2. Increasing the percentage of SnO in SnO2−x significantly enhances the hole transport capability of SnO2−x due to the enlarged Sn–O–Sn angles that increase orbital overlapping between O and Sn atoms, thus providing strategies for the further tuning of the carrier transport properties of SnO2−x by compositional and structural designs.

1.
J. J.
Yoo
,
G.
Seo
,
M. R.
Chua
,
T. G.
Park
,
Y.
Lu
,
F.
Rotermund
,
Y.-K.
Kim
,
C. S.
Moon
,
N. J.
Jeon
,
J.-P.
Correa-Baena
,
V.
Bulović
,
S. S.
Shin
,
M. G.
Bawendi
, and
J.
Seo
,
Nature
590
(
7847
),
587
593
(
2021
).
2.
Q.
Jiang
,
Z.
Ni
,
G.
Xu
,
Y.
Lin
,
P. N.
Rudd
,
R.
Xue
,
Y.
Li
,
Y.
Li
,
Y.
Gao
, and
J.
Huang
,
Adv. Mater.
32
,
2001581
(
2020
).
3.
J.
Zheng
,
C. F. J.
Lau
,
H.
Mehrvarz
,
F.-J.
Ma
,
Y.
Jiang
,
X.
Deng
,
A.
Soeriyadi
,
J.
Kim
,
M.
Zhang
,
L.
Hu
,
X.
Cui
,
D. S.
Lee
,
J.
Bing
,
Y.
Cho
,
C.
Chen
,
M. A.
Green
,
S.
Huang
, and
A. W. Y.
Ho-Baillie
,
Energy Environ. Sci.
11
(
9
),
2432
2443
(
2018
).
4.
Q.
Jiang
,
X.
Zhang
, and
J.
You
,
Small
14
,
e1801154
(
2018
).
5.
L.
Grządziel
,
M.
Krzywiecki
,
A.
Szwajca
,
A.
Sarfraz
,
G.
Genchev
, and
A.
Erbe
,
J. Phys. D: Appl. Phys.
51
(
31
),
315301
(
2018
).
6.
Y.
Lee
,
S.
Lee
,
G.
Seo
,
S.
Paek
,
K. T.
Cho
,
A. J.
Huckaba
,
M.
Calizzi
,
D-w
Choi
,
J.-S.
Park
,
D.
Lee
,
H. J.
Lee
,
A. M.
Asiri
, and
M. K.
Nazeeruddin
,
Adv. Sci.
5
(
6
),
1800130
(
2018
).
7.
T.
Hu
,
T.
Becker
,
N.
Pourdavoud
,
J.
Zhao
,
K. O.
Brinkmann
,
R.
Heiderhoff
,
T.
Gahlmann
,
Z.
Huang
,
S.
Olthof
,
K.
Meerholz
,
D.
Többens
,
B.
Cheng
,
Y.
Chen
, and
T.
Riedl
,
Adv. Mater.
29
(
27
),
1606656
(
2017
).
8.
J. P. C.
Baena
,
L.
Steier
,
W.
Tress
,
M.
Saliba
,
S.
Neutzner
,
T.
Matsui
,
F.
Giordano
,
T. J.
Jacobsson
,
A. R. S.
Kandada
,
S. M.
Zakeeruddin
,
A.
Petrozza
,
A.
Abate
,
M. K.
Nazeeruddin
,
M.
Grätzel
, and
A.
Hagfeldt
,
Energy Environ. Sci.
8
,
2928
(
2015
).
9.
D. P.
McMeekin
,
G.
Sadoughi
,
W.
Rehman
,
G. E.
Eperon
,
M.
Saliba
,
M. T.
Hörantner
,
A.
Haghighirad
,
N.
Sakai
,
L.
Korte
,
B.
Rech
,
M. B.
Johnston
,
L. M.
Herz
, and
H. J.
Snaith
,
Science
351
,
151
155
(
2016
).
10.
J.-Y.
Chen
,
C.-C.
Chueh
,
Z.
Zhu
,
W.-C.
Chen
, and
A. K. Y.
Jen
,
Sol. Energy Mater. Sol. Cells
164
,
47
55
(
2017
).
11.
D.
Leng
,
L.
Wu
,
H.
Jiang
,
Y.
Zhao
,
J.
Zhang
,
W.
Li
, and
L.
Feng
,
Int. J. Photoenergy
2012
,
1
6
.
12.
B. L.
Gehman
,
S.
Jonsson
,
T.
Rudolph
,
M.
Scherer
,
M.
Weigert
, and
R.
Werner
,
Thin Solid Films
220
(
1
),
333
336
(
1992
).
13.
K. J.
Saji
and
A. P. R.
Mary
,
ECS J. Solid State Sci. Technol.
4
(
9
),
Q101
Q104
(
2015
).
14.
Z.
Chen
,
G.
Yang
,
X.
Zheng
,
H.
Lei
,
C.
Chen
,
J.
Ma
,
H.
Wang
, and
G.
Fang
,
J. Power Sources
351
,
123
129
(
2017
).
15.
J.
Ma
,
X.
Zheng
,
H.
Lei
,
W.
Ke
,
C.
Chen
,
Z.
Chen
,
G.
Yang
, and
G.
Fang
,
Sol. RRL
1
(
10
),
1700118
(
2017
).
16.
K. G.
Godinho
,
A.
Walsh
, and
G. W.
Watson
,
J. Phys. Chem. C
113
,
439
448
(
2009
).
17.
Z.
Yu
,
Z.
Yang
,
Z.
Ni
,
Y.
Shao
,
B.
Chen
,
Y.
Lin
,
H.
Wei
,
Z. J.
Yu
,
Z.
Holman
, and
J.
Huang
,
Nat. Energy
5
(
9
),
657
665
(
2020
).
18.
Ç.
Kılıç
and
A.
Zunger
,
Phys. Rev. Lett.
88
(
9
),
095501
(
2002
).
19.
E.
Degoli
,
S.
Ossicini
,
G.
Cantele
,
E.
Luppi
,
R.
Magri
,
D.
Ninno
, and
O.
Bisi
,
Phys. Status Solidi C
2
(
9
),
3354
3358
(
2005
).
20.
Z. Y.
Ni
,
X. D.
Pi
, and
D.
Yang
,
Phys. Rev. B
89
(
3
),
035312
(
2014
).
21.
K.
Reimann
and
M.
Steube
,
Solid State Commun.
105
,
649
652
(
1998
).
22.
D.
Fröhlich
,
R.
Kenklies
, and
R.
Helbig
,
Phys. Rev. Lett.
41
(
25
),
1750
1751
(
1978
).
23.
M.
Feneberg
,
C.
Lidig
,
K.
Lange
,
R.
Goldhahn
,
M. D.
Neumann
,
N.
Esser
,
O.
Bierwagen
,
M. E.
White
,
M. Y.
Tsai
, and
J. S.
Speck
,
Appl. Phys. Lett.
104
(
23
),
231106
(
2014
).
24.
A.
Togo
,
F.
Oba
,
I.
Tanaka
, and
K.
Tatsumi
,
Phys. Rev. B
74
(
19
),
195128
(
2006
).
25.
J. B.
Varley
,
A.
Schleife
,
A.
Janotti
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
103
,
082118
(
2013
).
26.
V.-A.
Ha
,
F.
Ricci
,
G.-M.
Rignanese
, and
G.
Hautier
,
J. Mater. Chem. C
5
,
5772
(
2017
).
27.
Y.
Ogo
,
H.
Hiramatsu
,
K.
Nomura
,
H.
Yanagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Appl. Phys. Lett.
93
,
032113
(
2008
).
28.
Z.
Wang
,
P. K.
Nayak
,
J. A.
Caraveo-Frescas
, and
H. N.
Alshareef
,
Adv. Mater.
28
(
20
),
3831
3892
(
2016
).
29.
K. J.
Saji
,
Y. P.
Venkata Subbaiah
,
K.
Tian
, and
A.
Tiwari
,
Thin Solid Films
605
,
193
201
(
2016
).
30.
W.
Zhou
and
N.
Umezawa
,
Phys. Chem. Chem. Phys.
17
,
17816
(
2015
).
You do not currently have access to this content.