Using the semibulk approach, p-InxGa1−xN semibulk (p-SB) templates were grown with an indium content ranging from 2.4% to 15.2% via metalorganic chemical vapor deposition. When compared to optimized bulk p-GaN, the hole concentration in p-SB with an In content of ∼15.2% increased by two orders of magnitude from 5.22 × 1017 to 5.28 × 1019 cm−3. The resistivity and mobility of the templates decreased gradually from 3.13 Ω· cm and 3.82 cm2/V s for p-GaN to 0.24 Ω· cm and 0.48 cm2/V s for p-SB with an In content of 15.2%. Temperature dependent Hall measurements were conducted to estimate the activation energy of the p-SB template. The p-SB with the In content of ∼15.2% is estimated to have an activation energy of 29 meV. These heavily doped p-SB templates have comparable material qualities to that of GaN. The atomic force microscopy height retraces of p-SB films show device quality surface morphology, with root mean square roughness ranging from 2.53 to 4.84 nm. The current results can impact the performances of several nitride-based devices, such as laser diodes, LEDs, solar cells, and photodetectors.

1.
K. S.
Ramaiah
,
Y. K.
Su
,
S. J.
Chang
,
F. S.
Juang
, and
C. H.
Chen
, “
Photoluminescence characteristics of Mg-and Si-doped GaN thin films grown by MOCVD technique
,”
J. Cryst. Growth
220
,
405
412
(
2000
).
2.
X.
Chen
,
K. D.
Matthews
,
D.
Hao
,
W. J.
Schaff
, and
L. F.
Eastman
, “
Growth, fabrication, and characterization of InGaN solar cells
,”
Phys. Status Solidi A
205
,
1103
1105
(
2008
).
3.
G.
Verzellesi
,
D.
Saguatti
,
M.
Meneghini
,
F.
Bertazzi
,
M.
Goano
,
G.
Meneghesso
, and
E.
Zanoni
, “
Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies
,”
J. Appl. Phys.
114
,
071101
(
2013
).
4.
A. I.
Alhassan
,
E. C.
Young
,
A. Y.
Alyamani
,
A.
Albadri
,
S.
Nakamura
,
S. P.
DenBaars
, and
J. S.
Speck
, “
Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction
,”
Appl. Phys. Express
11
,
042101
(
2018
).
5.
B.
Gunning
,
J.
Lowder
,
M.
Moseley
, and
W. A.
Doolittle
, “
Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN
,”
Appl. Phys. Lett.
101
,
082106
(
2012
).
6.
T.
Fudetani
,
K.
Ueno
,
A.
Kobayashi
, and
H.
Fujioka
, “
Wide range doping controllability of p-type GaN films prepared via pulsed sputtering
,”
Appl. Phys. Lett.
114
,
032102
(
2019
).
7.
A. M.
Fischer
,
S.
Wang
,
F. A.
Ponce
,
B. P.
Gunning
,
C. A. M.
Fabien
, and
W. A.
Doolittle
, “
Origin of high hole concentrations in Mg-doped GaN films
,”
Phys. Status Solidi B
254
,
1600668
(
2017
).
8.
W.
Götz
,
N. M.
Johnson
,
C.
Chen
,
H.
Liu
,
C.
Kuo
, and
W.
Imler
, “
Activation energies of Si donors in GaN
,”
Appl. Phys. Lett.
68
,
3144
3146
(
1996
).
9.
S.
Nakamura
,
T.
Mukai
,
M.
Senoh
,
N.
Iwasa
,
M.
Senoh
,
A. C.
Huang Kuo
,
S.
Jinn Chang
, and
Y.
Kuin Su
, “
Thermal annealing effects on p-type Mg-doped GaN films
,”
Jpn. J. Appl. Phys., Part 2
31
,
L139
L142
(
1992
).
10.
F. A.
Reboredo
and
S. T.
Pantelides
, “
Novel defect complexes and their role in the p-type doping of GaN
,”
Phys. Rev. Lett.
82
,
1887
(
1999
).
11.
H.
Obloh
,
K. H.
Bachem
,
U.
Kaufmann
,
M.
Kunzer
,
M.
Maier
,
A.
Ramakrishnan
, and
P.
Schlotter
, “
Self-compensation in Mg doped p-type GaN grown by MOCVD
,”
J. Cryst. Growth
195
,
270
273
(
1998
).
12.
T.
Narita
,
K.
Tomita
,
Y.
Tokuda
,
T.
Kogiso
,
M.
Horita
, and
T.
Kachi
, “
The origin of carbon-related carrier compensation in p-type GaN layers grown by MOVPE
,”
J. Appl. Phys.
124
,
215701
(
2018
).
13.
W.
Lee
,
J.
Limb
,
J. H.
Ryou
,
D.
Yoo
,
T.
Chung
, and
R. D.
Dupuis
, “
Influence of growth temperature and growth rate of p-GaN layers on the characteristics of green light emitting diodes
,”
J. Electron. Mater.
35
,
587
591
(
2006
).
14.
K.
Kumakura
,
T.
Makimoto
, and
N.
Kobayashi
, “
High hole concentrations in Mg-doped InGaN grown by MOVPE
,”
J. Cryst. Growth
221
,
267
270
(
2000
).
15.
K.
Kumakura
,
T.
Makimoto
, and
N.
Kobayashi
, “
Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapor phase epitaxy
,”
J. Appl. Phys.
93
,
3370
3375
(
2003
).
16.
H. K.
Cho
,
J. Y.
Lee
,
G. M.
Yang
, and
C. S.
Kim
, “
Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density
,”
Appl. Phys. Lett.
79
,
215
217
(
2001
).
17.
Z.
Liliental-Weber
,
M.
Benamara
,
J.
Washburn
,
J. Z.
Domagala
,
J.
Bak-Misiuk
,
E. L.
Piner
,
J. C.
Roberts
, and
S. M.
Bedair
, “
Relaxation of InGaN thin layers observed by x-ray and transmission electron microscopy studies
,”
J. Electron. Mater.
30
,
439
444
(
2001
).
18.
D. M.
Van Den Broeck
,
D.
Bharrat
,
Z.
Liu
,
N. A.
El-Masry
, and
S. M.
Bedair
, “
Growth and characterization of high-quality, relaxed InyGa1−yN templates for optoelectronic applications
,”
J. Electron. Mater.
44
,
4161
4166
(
2015
).
19.
M.
Abdelhamid
,
J. G.
Reynolds
,
N. A.
El-Masry
, and
S. M.
Bedair
, “
Growth and characterization of InxGa1−xN (0 < x < 0.16) templates for controlled emissions from MQW
,”
J. Cryst. Growth
520
,
18
26
(
2019
).
20.
E. L.
Routh
,
M.
Abdelhamid
,
N. A.
El-Masry
, and
S. M.
Bedair
, “
Device quality templates of InxGa1−xN (x < 0.1) with defect densities comparable to GaN
,”
Appl. Phys. Lett.
117
,
052103
(
2020
).
21.
T. B.
Eldred
,
M.
Abdelhamid
,
J. G.
Reynolds
,
N. A.
El-Masry
,
J. M.
LeBeau
, and
S. M.
Bedair
, “
Observing relaxation in device quality InGaN templates by TEM techniques
,”
Appl. Phys. Lett.
116
,
102104
(
2020
).
22.
Y. C.
Lin
,
S. J.
Chang
,
Y. K.
Su
,
T. Y.
Tsai
,
C. S.
Chang
,
S. C.
Shei
,
C. W.
Kuo
, and
S. C.
Chen
, “
InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts
,”
Solid-State Electron.
47
,
849
853
(
2003
).
23.
B. N.
Pantha
,
A.
Sedhain
,
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
, “
Electrical and optical properties of p-type InGaN
,”
Appl. Phys. Lett.
95
,
261904
(
2009
).
24.
C. A.
Chang
,
T. Y.
Tang
,
P. H.
Chang
,
N. C.
Chen
, and
C. T.
Liang
, “
Magnesium doping of In-rich InGaN
,”
Jpn. J. Appl. Phys., Part 1
46
,
2840
2843
(
2007
).
25.
J.
Pereiro
,
A.
Redondo-Cubero
,
S.
Fernandez-Garrido
,
C.
Rivera
,
A.
Navarro
,
E.
Muñoz
,
E.
Calleja
, and
R.
Gago
, “
Mg doping of InGaN layers grown by PA-MBE for the fabrication of Schottky barrier photodiodes
,”
J. Phys. D
43
,
335101
(
2010
).
26.
Z.
Liu
,
X.
Yi
,
Z.
Yu
,
G.
Yuan
,
Y.
Liu
,
J.
Wang
,
J.
Li
,
N.
Lu
,
I.
Ferguson
, and
Y.
Zhang
, “
Impurity resonant states p-type doping in wide-band-gap nitrides
,”
Sci. Rep.
6
,
19537
(
2016
).
27.
A.
Gorai
,
S.
Panda
, and
D.
Biswas
, “
Advantages of InGaN/InGaN quantum well light emitting diodes: Better electron-hole overlap and stable output
,”
Optik
140
,
665
672
(
2017
).
28.
Y. C.
Yeo
,
T. C.
Chong
, and
M. F.
Li
, “
Electronic band structures and effective-mass parameters of wurtzite GaN and InN
,”
J. Appl. Phys.
83
,
1429
1436
(
1998
).
29.
K.
Kumakura
,
T.
Makimoto
, and
N.
Kobayashi
, “
Activation energy and electrical activity of Mg in Mg-doped InxGa1−xN (x < 0.2)
,”
Jpn. J. Appl. Phys., Part 2
39
,
L337
L339
(
2000
).
30.
E.
Haus
,
I. P.
Smorchkova
,
B.
Heying
,
P.
Fini
,
C.
Poblenz
,
T.
Mates
,
U. K.
Mishra
, and
J. S.
Speck
, “
The role of growth conditions on the p-doping of GaN by plasma-assisted molecular beam epitaxy
,”
J. Cryst. Growth
246
,
55
63
(
2002
).
31.
Y.
Chen
,
H.
Wu
,
G.
Yue
,
Z.
Chen
,
Z.
Zheng
,
Z.
Wu
,
G.
Wang
, and
H.
Jiang
, “
Enhanced Mg doping efficiency in p-type GaN by indium-surfactant-assisted delta doping method
,”
Appl. Phys. Express
6
,
041001
(
2013
).
32.
S.
Nayak
,
M.
Gupta
,
U. V.
Waghmare
, and
S. M.
Shivaprasad
, “
Origin of blue luminescence in Mg-doped GaN
,”
Phys. Rev. Appl.
11
,
14027
(
2019
).
33.
K.
Kumakura
,
T.
Makimoto
, and
N.
Kobayashi
, “
Efficient hole generation above 1019 cm−3 in Mg-doped in GaN/GaN superlattices at room temperature
,”
Jpn. J. Appl. Phys., Part 2
39
,
L195
L220
(
2000
).
34.
S.
Pezzagna
,
P.
Vennéguès
,
N.
Grandjean
, and
J.
Massies
, “
Polarity inversion of GaN(0001) by a high Mg doping
,”
J. Cryst. Growth
269
,
249
256
(
2004
).
35.
A. M.
Hosalli
,
D. M.
Van Den Broeck
,
D.
Bharrat
,
N. A.
El-Masry
, and
S. M.
Bedair
, “
Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes
,”
Appl. Phys. Lett.
103
,
231108
(
2013
).
36.
M.
Abdelhamid
,
E. L.
Routh
, and
S. M.
Bedair
, “
The dependence of the emission from MQWs on the indium content in the underlying InGaN templates: Experimental and modeling results
,”
Semicond. Sci. Technol.
36
,
035018
(
2021
).
You do not currently have access to this content.