Quantum-limited microwave parametric amplifiers are genuine key pillars for rising quantum technologies and, in general, for applications that rely on the successful readout of weak microwave signals by adding only the minimum amount of noise allowed by quantum mechanics. In this Perspective, after providing a brief overview on the different families of parametric microwave amplifiers, we focus on traveling wave parametric amplifiers, underlining the key achievements of the last few years and the present open challenges. We also discuss possible new research directions beyond amplification such as exploring these devices as a platform for multi-mode entanglement generation and for the development of single photon detectors.

1.
J.
Stehlik
,
Y. Y.
Liu
,
C. M.
Quintana
,
C.
Eichler
,
T. R.
Hartke
, and
J. R.
Petta
, “
Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier
,”
Phys. Rev. Appl.
4
,
014018
(
2015
).
2.
P.
Krantz
,
M.
Kjaergaard
,
F.
Yan
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
A quantum engineer's guide to superconducting qubits
,”
Appl. Phys. Rev.
6
,
021318
(
2019
).
3.
J. D.
Teufel
,
T.
Donner
,
D.
Li
,
J. W.
Harlow
,
M. S.
Allman
,
K.
Cicak
,
A. J.
Sirois
,
J. D.
Whittaker
,
K. W.
Lehnert
, and
R. W.
Simmonds
, “
Sideband cooling of micromechanical motion to the quantum ground state
,”
Nature
475
,
359
363
(
2011
).
4.
A.
Bienfait
,
J. J.
Pla
,
Y.
Kubo
,
M.
Stern
,
X.
Zhou
,
C. C.
Lo
,
C. D.
Weis
,
T.
Schenkel
,
M. L.
Thewalt
,
D.
Vion
,
D.
Esteve
,
B.
Julsgaard
,
K.
Mølmer
,
J. J.
Morton
, and
P.
Bertet
, “
Reaching the quantum limit of sensitivity in electron spin resonance
,”
Nat. Nanotechnol.
11
,
253
257
(
2016
).
5.
D. M.
Smith
,
L.
Bakker
,
R. H.
Witvers
,
B. E.
Woestenburg
, and
K. D.
Palmer
, “
Low noise amplifier for radio astronomy
,”
Int. J. Microwave Wireless Technol.
5
,
453
461
(
2013
).
6.
C.
Bockstiegel
,
J.
Gao
,
M. R.
Vissers
,
M.
Sandberg
,
S.
Chaudhuri
,
A.
Sanders
,
L. R.
Vale
,
K. D.
Irwin
, and
D. P.
Pappas
, “
Development of a broadband NbTiN traveling wave parametric amplifier for MKID readout
,”
J. Low Temp. Phys.
176
,
476
482
(
2014
).
7.
A.
Caldwell
,
G.
Dvali
,
B.
Majorovits
,
A.
Millar
,
G.
Raffelt
,
J.
Redondo
,
O.
Reimann
,
F.
Simon
, and
F.
Steffen
, “
Dielectric haloscopes: A new way to detect axion dark matter
,”
Phys. Rev. Lett.
118
,
091801
(
2017
).
8.
J.
Jeong
,
S. W.
Youn
,
S.
Bae
,
J.
Kim
,
T.
Seong
,
J. E.
Kim
, and
Y. K.
Semertzidis
, “
Search for invisible axion dark matter with a multiple-cell haloscope
,”
Phys. Rev. Lett.
125
,
221302
(
2020
).
9.
K. M.
Backes
,
D. A.
Palken
,
S. A.
Kenany
,
B. M.
Brubaker
,
S. B.
Cahn
,
A.
Droster
,
G. C.
Hilton
,
S.
Ghosh
,
H.
Jackson
,
S. K.
Lamoreaux
,
A. F.
Leder
,
K. W.
Lehnert
,
S. M.
Lewis
,
M.
Malnou
,
R. H.
Maruyama
,
N. M.
Rapidis
,
M.
Simanovskaia
,
S.
Singh
,
D. H.
Speller
,
I.
Urdinaran
,
L. R.
Vale
,
E. C.
van Assendelft
,
K.
van Bibber
, and
H.
Wang
, “
A quantum enhanced search for dark matter axions
,”
Nature
590
,
238
242
(
2021
).
10.
K.
Wurtz
,
B. M.
Brubaker
,
Y.
Jiang
,
E. P.
Ruddy
,
D. A.
Palken
, and
K. W.
Lehnert
, “
A cavity entanglement and state swapping method to accelerate the search for axion dark matter
,” arXiv:2107.04147 (
2021
).
11.
D. M.
Pozar
,
Microwave Engineering
, 4th ed. (
Wiley
,
Hoboken, NJ
,
2012
).
12.
M. H.
Devoret
and
R. J.
Schoelkopf
, “
Superconducting circuits for quantum information: An outlook
,”
Science
339
,
1169
1174
(
2013
).
13.
A. A.
Clerk
,
M. H.
Devoret
,
S. M.
Girvin
,
F.
Marquardt
, and
R. J.
Schoelkopf
, “
Introduction to quantum noise, measurement, and amplification
,”
Rev. Mod. Phys.
82
,
1155
1208
(
2010
).
14.
J.
Aumentado
, “
Superconducting parametric amplifiers: The state of the art in josephson parametric amplifiers
,”
IEEE Microwave Mag.
21
,
45
59
(
2020
).
15.
R. W.
Boyd
,
Nonlinear Optics
, 3rd ed. (
Elsevier
,
2008
).
16.
B.
Yurke
,
P. G.
Kaminsky
,
R. E.
Miller
,
E. A.
Whittaker
,
A. D.
Smith
,
A. H.
Silver
, and
R. W.
Simon
, “
Observation of 4.2-K equilibrium-noise squeezing via a Josephson-parametric amplifier
,”
Phys. Rev. Lett.
60
,
764
767
(
1988
).
17.
B.
Yurke
,
L. R.
Corruccini
,
P. G.
Kaminsky
,
L. W.
Rupp
,
A. D.
Smith
,
A. H.
Silver
,
R. W.
Simon
, and
E. A.
Whittaker
, “
Observation of parametric amplification and deamplification in a Josephson parametric amplifier
,”
Phys. Rev. A
39
,
2519
2533
(
1989
).
18.
D.
Vion
,
A.
Aassime
,
A.
Cottet
,
P.
Joyez
,
H.
Pothier
,
C.
Urbina
,
D.
Esteve
, and
M. H.
Devoret
, “
Manipulating the quantum state of an electrical circuit
,”
Science
296
,
886
889
(
2002
).
19.
A.
Blais
,
R. S.
Huang
,
A.
Wallraff
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
,”
Phys. Rev. A
69
,
062320
(
2004
).
20.
A.
Wallraff
,
D. I.
Schuster
,
A.
Blais
,
L.
Frunzio
,
R. S.
Huang
,
J.
Majer
,
S.
Kumar
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics
,”
Nature
431
,
162
167
(
2004
).
21.
J.
Koch
,
T. M.
Yu
,
J.
Gambetta
,
A. A.
Houck
,
D. I.
Schuster
,
J.
Majer
,
A.
Blais
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Charge-insensitive qubit design derived from the Cooper pair box
,”
Phys. Rev. A
76
,
042319
(
2007
).
22.
I.
Siddiqi
,
R.
Vijay
,
F.
Pierre
,
C. M.
Wilson
,
M.
Metcalfe
,
C.
Rigetti
,
L.
Frunzio
, and
M. H.
Devoret
, “
RF-driven Josephson bifurcation amplifier for quantum measurement
,”
Phys. Rev. Lett.
93
,
207002
(
2004
).
23.
V. E.
Manucharyan
,
E.
Boaknin
,
M.
Metcalfe
,
R.
Vijay
,
I.
Siddiqi
, and
M.
Devoret
, “
Microwave bifurcation of a Josephson junction: Embedding-circuit requirements
,”
Phys. Rev. B
76
,
014524
(
2007
).
24.
F.
Mallet
,
F. R.
Ong
,
A.
Palacios-Laloy
,
F.
Nguyen
,
P.
Bertet
,
D.
Vion
, and
D.
Esteve
, “
Single-shot qubit readout in circuit quantum electrodynamics
,”
Nat. Phys.
5
,
791
795
(
2009
).
25.
L.
Planat
,
A.
Ranadive
,
R.
Dassonneville
,
J.
Puertas Martínez
,
S.
Léger
,
C.
Naud
,
O.
Buisson
,
W.
Hasch-Guichard
,
D. M.
Basko
, and
N.
Roch
, “
Photonic-crystal Josephson traveling-wave parametric amplifier
,”
Phys. Rev. X
10
,
021021
(
2020
).
26.
A.
Ranadive
,
M.
Esposito
,
L.
Planat
,
E.
Bonet
,
C.
Naud
,
O.
Buisson
,
W.
Guichard
, and
N.
Roch
, “
A reversed Kerr traveling wave parametric amplifier
,” arXiv:2101.05815 (
2021
).
27.
See https://github.com/arpitranadive/jj_metamaterial_simulation for “
github: JJ metamaterial simulation
,”
2021
.
28.
M. A.
Castellanos-Beltran
and
K. W.
Lehnert
, “
Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator
,”
Appl. Phys. Lett.
91
,
083509
(
2007
).
29.
J. Y.
Mutus
,
T. C.
White
,
R.
Barends
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
E.
Jeffrey
,
J.
Kelly
,
A.
Megrant
,
C.
Neill
,
P. J.
O'Malley
,
P.
Roushan
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
K. M.
Sundqvist
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Strong environmental coupling in a Josephson parametric amplifier
,”
Appl. Phys. Lett.
104
,
263513
(
2014
).
30.
T.
Roy
,
S.
Kundu
,
M.
Chand
,
A. M.
Vadiraj
,
A.
Ranadive
,
N.
Nehra
,
M. P.
Patankar
,
J.
Aumentado
,
A. A.
Clerk
, and
R.
Vijay
, “
Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product
,”
Appl. Phys. Lett.
107
,
262601
(
2015
).
31.
M. A.
Castellanos-Beltran
,
K. D.
Irwin
,
G. C.
Hilton
,
L. R.
Vale
, and
K. W.
Lehnert
, “
Amplification and squeezing of quantum noise with a tunable Josephson metamaterial
,”
Nat. Phys.
4
,
929
931
(
2008
).
32.
G.
Liu
,
T. C.
Chien
,
X.
Cao
,
O.
Lanes
,
E.
Alpern
,
D.
Pekker
, and
M.
Hatridge
, “
Josephson parametric converter saturation and higher order effects
,”
Appl. Phys. Lett.
111
,
202603
(
2017
).
33.
L.
Planat
,
R.
Dassonneville
,
J. P.
Martínez
,
F.
Foroughi
,
O.
Buisson
,
W.
Hasch-Guichard
,
C.
Naud
,
R.
Vijay
,
K.
Murch
, and
N.
Roch
, “
Understanding the saturation power of Josephson parametric amplifiers made from SQUID arrays
,”
Phys. Rev. Appl.
11
,
034014
(
2019
).
34.
T.
Yamamoto
,
K.
Inomata
,
M.
Watanabe
,
K.
Matsuba
,
T.
Miyazaki
,
W. D.
Oliver
,
Y.
Nakamura
, and
J. S.
Tsai
, “
Flux-driven Josephson parametric amplifier
,”
Appl. Phys. Lett.
93
,
042510
(
2008
).
35.
N.
Bergeal
,
F.
Schackert
,
M.
Metcalfe
,
R.
Vijay
,
V. E.
Manucharyan
,
L.
Frunzio
,
D. E.
Prober
,
R. J.
Schoelkopf
,
S. M.
Girvin
, and
M. H.
Devoret
, “
Phase-preserving amplification near the quantum limit with a Josephson ring modulator
,”
Nature
465
,
64
68
(
2010
).
36.
N.
Roch
,
E.
Flurin
,
F.
Nguyen
,
P.
Morfin
,
P.
Campagne-Ibarcq
,
M. H.
Devoret
, and
B.
Huard
, “
Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit
,”
Phys. Rev. Lett.
108
,
147701
(
2012
).
37.
C.
Eichler
,
Y.
Salathe
,
J.
Mlynek
,
S.
Schmidt
, and
A.
Wallraff
, “
Quantum-limited amplification and entanglement in coupled nonlinear resonators
,”
Phys. Rev. Lett.
113
,
110502
(
2014
).
38.
N. E.
Frattini
,
V. V.
Sivak
,
A.
Lingenfelter
,
S.
Shankar
, and
M. H.
Devoret
, “
Optimizing the nonlinearity and dissipation of a SNAIL parametric amplifier for dynamic range
,”
Phys. Rev. Appl.
10
,
054020
(
2018
).
39.
V. V.
Sivak
,
S.
Shankar
,
G.
Liu
,
J.
Aumentado
, and
M. H.
Devoret
, “
Josephson Array-Mode Parametric Amplifier
,”
Phys. Rev. Appl.
13
,
024014
(
2020
).
40.
B.
Abdo
,
F.
Schackert
,
M.
Hatridge
,
C.
Rigetti
, and
M.
Devoret
, “
Josephson amplifier for qubit readout
,”
Appl. Phys. Lett.
99
,
162506
(
2011
).
41.
A.
Metelmann
and
A. A.
Clerk
, “
Nonreciprocal photon transmission and amplification via reservoir engineering
,”
Phys. Rev. X
5
,
021025
(
2015
).
42.
F.
Lecocq
,
L.
Ranzani
,
G. A.
Peterson
,
K.
Cicak
,
R. W.
Simmonds
,
J. D.
Teufel
, and
J.
Aumentado
, “
Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier
,”
Phys. Rev. Appl.
7
,
024028
(
2017
).
43.
F.
Lecocq
,
L.
Ranzani
,
G. A.
Peterson
,
K.
Cicak
,
X. Y.
Jin
,
R. W.
Simmonds
,
J. D.
Teufel
, and
J.
Aumentado
, “
Efficient qubit measurement with a nonreciprocal microwave amplifier
,”
Phys. Rev. Lett.
126
,
020502
(
2021
).
44.
G. P.
Agrawal
,
Nonlinear Fiber Optics
(
Elsevier Academic Press
,
2013
).
45.
A. L.
Cullen
, “
A travelling-wave parametric amplifier
,”
Nature
181
,
332
332
(
1958
).
46.
P. K.
Tien
, “
Parametric amplification and frequency mixing in propagating circuits
,”
J. Appl. Phys.
29
,
1347
1357
(
1958
).
47.
A.
Cullen
, “
Theory of the travelling-wave parametric amplifier
,”
Proc. IEE-Part B
107
(
6
),
101
107
(
1960
).
48.
A.
Sörenssen
, “
A theoretical investigation of a travelling wave parametric amplifier
,”
Appl. Sci. Res., Sect. B
10
,
463
477
(
1962
).
49.
M. J.
Feldman
,
P. T.
Parrish
, and
R. Y.
Chiao
, “
Parametric amplification by unbiased Josephson junctions
,”
J. Appl. Phys.
46
,
4031
4042
(
1975
).
50.
S.
Wahlsten
,
S.
Rudner
, and
T.
Claeson
, “
Parametric amplification in arrays of Josephson tunnel junctions
,”
Appl. Phys. Lett.
30
,
298
300
(
1977
).
51.
M.
Sweeny
and
R.
Mahler
, “
A travelling-wave parametric amplifier utilizing Josephson junctions
,”
IEEE Trans. Magn.
21
,
654
655
(
1985
).
52.
B.
Yurke
,
M. L.
Roukes
,
R.
Movshovich
, and
A. N.
Pargellis
, “
A low-noise series-array Josephson junction parametric amplifier
,”
Appl. Phys. Lett.
69
,
3078
3080
(
1996
).
53.
D. H.
Slichter
,
L.
Spietz
,
O.
Naaman
,
J.
Aumentado
, and
I.
Siddiqi
, “
Progress towards a broadband traveling wave Josephson parametric amplifier
,” in
APS Meeting Abstracts
(
APS
,
2010
), p.
T26.009
.
54.
D. H.
Slichter
, “
Quantum jumps and measurement backaction in a superconducting qubit
,” Ph.D. thesis (
University of California
,
Berkeley
,
2011
).
55.
B.
Ho Eom
,
P. K.
Day
,
H. G.
Leduc
, and
J.
Zmuidzinas
, “
A wideband, low-noise superconducting amplifier with high dynamic range
,”
Nat. Phys.
8
,
623
627
(
2012
).
56.
O.
Yaakobi
,
L.
Friedland
,
C.
Macklin
, and
I.
Siddiqi
, “
Parametric amplification in Josephson junction embedded transmission lines
,”
Phys. Rev. B
87
,
144301
(
2013
).
57.
K.
O'Brien
,
C.
Macklin
,
I.
Siddiqi
, and
X.
Zhang
, “
Resonant phase matching of Josephson junction traveling wave parametric amplifiers
,”
Phys. Rev. Lett.
113
,
157001
(
2014
).
58.
C.
Macklin
,
K.
O'Brien
,
D.
Hover
,
M. E.
Schwartz
,
V.
Bolkhovsky
,
X.
Zhang
,
W. D.
Oliver
, and
I.
Siddiqi
, “
A near quantum-limited Josephson traveling-wave parametric amplifier
,”
Science
350
,
307
310
(
2015
).
59.
A. B.
Zorin
, “
Josephson traveling-wave parametric amplifier with three-wave mixing
,”
Phys. Rev. Appl.
6
,
034006
(
2016
).
60.
M. T.
Bell
and
A.
Samolov
, “
Traveling-wave parametric amplifier based on a chain of coupled asymmetric SQUIDs
,”
Phys. Rev. Appl.
4
,
024014
(
2015
).
61.
N. E.
Frattini
,
U.
Vool
,
S.
Shankar
,
A.
Narla
,
K. M.
Sliwa
, and
M. H.
Devoret
, “
3-wave mixing Josephson dipole element
,”
Appl. Phys. Lett.
110
,
222603
(
2017
).
62.
M. R.
Vissers
,
R. P.
Erickson
,
H. S.
Ku
,
L.
Vale
,
X.
Wu
,
G. C.
Hilton
, and
D. P.
Pappas
, “
Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing
,”
Appl. Phys. Lett.
108
,
012601
(
2016
).
63.
L.
Ranzani
,
M.
Bal
,
K. C.
Fong
,
G.
Ribeill
,
X.
Wu
,
J.
Long
,
H. S.
Ku
,
R. P.
Erickson
,
D.
Pappas
, and
T. A.
Ohki
, “
Kinetic inductance traveling-wave amplifiers for multiplexed qubit readout
,”
Appl. Phys. Lett.
113
,
242602
(
2018
).
64.
T. C.
White
,
J. Y.
Mutus
,
I. C.
Hoi
,
R.
Barends
,
B.
Campbell
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
E.
Jeffrey
,
J.
Kelly
,
A.
Megrant
,
C.
Neill
,
P. J.
O'Malley
,
P.
Roushan
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
S.
Chaudhuri
,
J.
Gao
, and
J. M.
Martinis
, “
Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching
,”
Appl. Phys. Lett.
106
,
242601
(
2015
).
65.
A. A.
Adamyan
,
S. E.
De Graaf
,
S. E.
Kubatkin
, and
A. V.
Danilov
, “
Superconducting microwave parametric amplifier based on a quasi-fractal slow propagation line
,”
J. Appl. Phys.
119
,
083901
(
2016
).
66.
S.
Chaudhuri
,
D.
Li
,
K. D.
Irwin
,
C.
Bockstiegel
,
J.
Hubmayr
,
J. N.
Ullom
,
M. R.
Vissers
, and
J.
Gao
, “
Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines
,”
Appl. Phys. Lett.
110
,
152601
(
2017
).
67.
A. B.
Zorin
,
M.
Khabipov
,
J.
Dietel
, and
R.
Dolata
, “
Traveling-wave parametric amplifier based on three-wave mixing in a Josephson metamaterial
,” in
2017 16th International Superconductive Electronics Conference (ISEC)
(
Institute of Electrical and Electronics Engineers Inc
.,
2018
), pp.
1
3
.
68.
A.
Miano
and
O. A.
Mukhanov
, “
Symmetric traveling wave parametric amplifier
,”
IEEE Trans. Appl. Supercond.
29
,
1501706
(
2019
).
69.
S.
Goldstein
,
N.
Kirsh
,
E.
Svetitsky
,
Y.
Zamir
,
O.
Hachmo
,
C. E. M.
De Oliveira
, and
N.
Katz
, “
Four wave-mixing in a microstrip kinetic inductance travelling wave parametric amplifier
,”
Appl. Phys. Lett.
116
,
152602
(
2020
).
70.
M.
Malnou
,
M.
Vissers
,
J.
Wheeler
,
J.
Aumentado
,
J.
Hubmayr
,
J.
Ullom
, and
J.
Gao
, “
Three-wave mixing kinetic inductance traveling-wave amplifier with near-quantum-limited noise performance
,”
PRX Quantum
2
,
010302
(
2021
).
71.
S.
Shu
,
N.
Klimovich
,
B. H.
Eom
,
A. D.
Beyer
,
R. B.
Thakur
,
H. G.
Leduc
, and
P. K.
Day
, “
Nonlinearity and wide-band parametric amplification in a (Nb,Ti)N microstrip transmission line
,”
Phys. Rev. Res.
3
,
023184
(
2021
).
72.
A. D.
O'Connell
,
M.
Ansmann
,
R. C.
Bialczak
,
M.
Hofheinz
,
N.
Katz
,
E.
Lucero
,
C.
McKenney
,
M.
Neeley
,
H.
Wang
,
E. M.
Weig
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Microwave dielectric loss at single photon energies and millikelvin temperatures
,”
Appl. Phys. Lett.
92
,
112903
(
2008
).
73.
H.
Paik
and
K. D.
Osborn
, “
Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits
,”
Appl. Phys. Lett.
96
,
072505
(
2010
).
74.
F.
Boussaha
,
S.
Beldi
,
A.
Monfardini
,
J.
Hu
,
M.
Calvo
,
C.
Chaumont
,
F.
Levy-Bertrand
,
T.
Vacelet
,
A.
Traini
,
J.
Firminy
,
M.
Piat
, and
F.
Reix
, “
Development of TiN vacuum-gap capacitor lumped-element kinetic inductance detectors
,”
J. Low Temp. Phys.
199
,
994
1003
(
2020
).
75.
K.
Peng
,
M.
Naghiloo
,
J.
Wang
,
G. D.
Cunningham
,
Y.
Ye
, and
K. P.
O'Brien
, “
Near-ideal quantum efficiency with a Floquet mode traveling wave parametric amplifier
,” arXiv:2104.08269 (
2021
).
76.
T.
Dixon
,
J. W.
Dunstan
,
G. B.
Long
,
J. M.
Williams
,
P. J.
Meeson
, and
C. D.
Shelly
, “
Capturing complex behavior in Josephson traveling-wave parametric amplifiers
,”
Phys. Rev. Appl.
14
,
034058
(
2020
).
77.
A.
Zorin
, “
Flux-driven Josephson traveling-wave parametric amplifier
,”
Phys. Rev. Appl.
12
,
044051
(
2019
).
78.
K. M.
Sliwa
,
M.
Hatridge
,
A.
Narla
,
S.
Shankar
,
L.
Frunzio
,
R. J.
Schoelkopf
, and
M. H.
Devoret
, “
Reconfigurable Josephson circulator/directional amplifier
,”
Phys. Rev. X
5
,
041020
(
2015
).
79.
L.
Ranzani
,
S.
Kotler
,
A. J.
Sirois
,
M. P.
Defeo
,
M.
Castellanos-Beltran
,
K.
Cicak
,
L. R.
Vale
, and
J.
Aumentado
, “
Wideband isolation by frequency conversion in a Josephson-junction transmission line
,”
Phys. Rev. Appl.
8
,
054035
(
2017
).
80.
M.
Naghiloo
,
K.
Peng
,
Y.
Ye
,
G.
Cunningham
, and
K. P.
O'Brien
, “
Broadband microwave isolation with adiabatic mode conversion in coupled superconducting transmission lines
,” arXiv:2103.07793 (
2021
).
81.
S. R.
Bandler
,
J. A.
Chervenak
,
A. M.
Datesman
,
A. M.
Devasia
,
M.
DiPirro
,
K.
Sakai
,
S. J.
Smith
,
T. R.
Stevenson
,
W.
Yoon
,
D.
Bennett
,
B.
Mates
,
D.
Swetz
,
J. N.
Ullom
,
K. D.
Irwin
, and
M. E.
Eckart
, “
Lynx x-ray microcalorimeter
,”
J. Astron Telesc., Instrum., Syst.
5
,
021017
(
2019
).
82.
A. L.
Grimsmo
and
A.
Blais
, “
Squeezing and quantum state engineering with Josephson travelling wave amplifiers
,”
npj Quantum Inf.
3
,
20
(
2017
).
83.
L.
Fasolo
,
A.
Greco
,
E.
Enrico
,
F.
Illuminati
,
R. L.
Franco
,
D.
Vitali
, and
P.
Livreri
, “
Josephson travelling wave parametric amplifiers as non-classical light source for microwave quantum illumination
,” arXiv:2106.00522 (
2021
).
84.
A. L.
Grimsmo
,
B.
Royer
,
J. M.
Kreikebaum
,
Y.
Ye
,
K.
O'Brien
,
I.
Siddiqi
, and
A.
Blais
, “
Quantum metamaterial for broadband detection of single microwave photons
,”
Phys. Rev. Appl.
15
,
034074
(
2021
).
You do not currently have access to this content.