Quantum-limited microwave parametric amplifiers are genuine key pillars for rising quantum technologies and, in general, for applications that rely on the successful readout of weak microwave signals by adding only the minimum amount of noise allowed by quantum mechanics. In this Perspective, after providing a brief overview on the different families of parametric microwave amplifiers, we focus on traveling wave parametric amplifiers, underlining the key achievements of the last few years and the present open challenges. We also discuss possible new research directions beyond amplification such as exploring these devices as a platform for multi-mode entanglement generation and for the development of single photon detectors.
REFERENCES
1.
J.
Stehlik
,
Y. Y.
Liu
,
C. M.
Quintana
,
C.
Eichler
,
T. R.
Hartke
, and
J. R.
Petta
, “
Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier
,” Phys. Rev. Appl.
4
, 014018
(2015
).2.
P.
Krantz
,
M.
Kjaergaard
,
F.
Yan
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
A quantum engineer's guide to superconducting qubits
,” Appl. Phys. Rev.
6
, 021318
(2019
).3.
J. D.
Teufel
,
T.
Donner
,
D.
Li
,
J. W.
Harlow
,
M. S.
Allman
,
K.
Cicak
,
A. J.
Sirois
,
J. D.
Whittaker
,
K. W.
Lehnert
, and
R. W.
Simmonds
, “
Sideband cooling of micromechanical motion to the quantum ground state
,” Nature
475
, 359
–363
(2011
).4.
A.
Bienfait
,
J. J.
Pla
,
Y.
Kubo
,
M.
Stern
,
X.
Zhou
,
C. C.
Lo
,
C. D.
Weis
,
T.
Schenkel
,
M. L.
Thewalt
,
D.
Vion
,
D.
Esteve
,
B.
Julsgaard
,
K.
Mølmer
,
J. J.
Morton
, and
P.
Bertet
, “
Reaching the quantum limit of sensitivity in electron spin resonance
,” Nat. Nanotechnol.
11
, 253
–257
(2016
).5.
D. M.
Smith
,
L.
Bakker
,
R. H.
Witvers
,
B. E.
Woestenburg
, and
K. D.
Palmer
, “
Low noise amplifier for radio astronomy
,” Int. J. Microwave Wireless Technol.
5
, 453
–461
(2013
).6.
C.
Bockstiegel
,
J.
Gao
,
M. R.
Vissers
,
M.
Sandberg
,
S.
Chaudhuri
,
A.
Sanders
,
L. R.
Vale
,
K. D.
Irwin
, and
D. P.
Pappas
, “
Development of a broadband NbTiN traveling wave parametric amplifier for MKID readout
,” J. Low Temp. Phys.
176
, 476
–482
(2014
).7.
A.
Caldwell
,
G.
Dvali
,
B.
Majorovits
,
A.
Millar
,
G.
Raffelt
,
J.
Redondo
,
O.
Reimann
,
F.
Simon
, and
F.
Steffen
, “
Dielectric haloscopes: A new way to detect axion dark matter
,” Phys. Rev. Lett.
118
, 091801
(2017
).8.
J.
Jeong
,
S. W.
Youn
,
S.
Bae
,
J.
Kim
,
T.
Seong
,
J. E.
Kim
, and
Y. K.
Semertzidis
, “
Search for invisible axion dark matter with a multiple-cell haloscope
,” Phys. Rev. Lett.
125
, 221302
(2020
).9.
K. M.
Backes
,
D. A.
Palken
,
S. A.
Kenany
,
B. M.
Brubaker
,
S. B.
Cahn
,
A.
Droster
,
G. C.
Hilton
,
S.
Ghosh
,
H.
Jackson
,
S. K.
Lamoreaux
,
A. F.
Leder
,
K. W.
Lehnert
,
S. M.
Lewis
,
M.
Malnou
,
R. H.
Maruyama
,
N. M.
Rapidis
,
M.
Simanovskaia
,
S.
Singh
,
D. H.
Speller
,
I.
Urdinaran
,
L. R.
Vale
,
E. C.
van Assendelft
,
K.
van Bibber
, and
H.
Wang
, “
A quantum enhanced search for dark matter axions
,” Nature
590
, 238
–242
(2021
).10.
K.
Wurtz
,
B. M.
Brubaker
,
Y.
Jiang
,
E. P.
Ruddy
,
D. A.
Palken
, and
K. W.
Lehnert
, “
A cavity entanglement and state swapping method to accelerate the search for axion dark matter
,” arXiv:2107.04147 (2021
).11.
12.
M. H.
Devoret
and
R. J.
Schoelkopf
, “
Superconducting circuits for quantum information: An outlook
,” Science
339
, 1169
–1174
(2013
).13.
A. A.
Clerk
,
M. H.
Devoret
,
S. M.
Girvin
,
F.
Marquardt
, and
R. J.
Schoelkopf
, “
Introduction to quantum noise, measurement, and amplification
,” Rev. Mod. Phys.
82
, 1155
–1208
(2010
).14.
J.
Aumentado
, “
Superconducting parametric amplifiers: The state of the art in josephson parametric amplifiers
,” IEEE Microwave Mag.
21
, 45
–59
(2020
).15.
16.
B.
Yurke
,
P. G.
Kaminsky
,
R. E.
Miller
,
E. A.
Whittaker
,
A. D.
Smith
,
A. H.
Silver
, and
R. W.
Simon
, “
Observation of 4.2-K equilibrium-noise squeezing via a Josephson-parametric amplifier
,” Phys. Rev. Lett.
60
, 764
–767
(1988
).17.
B.
Yurke
,
L. R.
Corruccini
,
P. G.
Kaminsky
,
L. W.
Rupp
,
A. D.
Smith
,
A. H.
Silver
,
R. W.
Simon
, and
E. A.
Whittaker
, “
Observation of parametric amplification and deamplification in a Josephson parametric amplifier
,” Phys. Rev. A
39
, 2519
–2533
(1989
).18.
D.
Vion
,
A.
Aassime
,
A.
Cottet
,
P.
Joyez
,
H.
Pothier
,
C.
Urbina
,
D.
Esteve
, and
M. H.
Devoret
, “
Manipulating the quantum state of an electrical circuit
,” Science
296
, 886
–889
(2002
).19.
A.
Blais
,
R. S.
Huang
,
A.
Wallraff
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
,” Phys. Rev. A
69
, 062320
(2004
).20.
A.
Wallraff
,
D. I.
Schuster
,
A.
Blais
,
L.
Frunzio
,
R. S.
Huang
,
J.
Majer
,
S.
Kumar
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics
,” Nature
431
, 162
–167
(2004
).21.
J.
Koch
,
T. M.
Yu
,
J.
Gambetta
,
A. A.
Houck
,
D. I.
Schuster
,
J.
Majer
,
A.
Blais
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Charge-insensitive qubit design derived from the Cooper pair box
,” Phys. Rev. A
76
, 042319
(2007
).22.
I.
Siddiqi
,
R.
Vijay
,
F.
Pierre
,
C. M.
Wilson
,
M.
Metcalfe
,
C.
Rigetti
,
L.
Frunzio
, and
M. H.
Devoret
, “
RF-driven Josephson bifurcation amplifier for quantum measurement
,” Phys. Rev. Lett.
93
, 207002
(2004
).23.
V. E.
Manucharyan
,
E.
Boaknin
,
M.
Metcalfe
,
R.
Vijay
,
I.
Siddiqi
, and
M.
Devoret
, “
Microwave bifurcation of a Josephson junction: Embedding-circuit requirements
,” Phys. Rev. B
76
, 014524
(2007
).24.
F.
Mallet
,
F. R.
Ong
,
A.
Palacios-Laloy
,
F.
Nguyen
,
P.
Bertet
,
D.
Vion
, and
D.
Esteve
, “
Single-shot qubit readout in circuit quantum electrodynamics
,” Nat. Phys.
5
, 791
–795
(2009
).25.
L.
Planat
,
A.
Ranadive
,
R.
Dassonneville
,
J.
Puertas Martínez
,
S.
Léger
,
C.
Naud
,
O.
Buisson
,
W.
Hasch-Guichard
,
D. M.
Basko
, and
N.
Roch
, “
Photonic-crystal Josephson traveling-wave parametric amplifier
,” Phys. Rev. X
10
, 021021
(2020
).26.
A.
Ranadive
,
M.
Esposito
,
L.
Planat
,
E.
Bonet
,
C.
Naud
,
O.
Buisson
,
W.
Guichard
, and
N.
Roch
, “
A reversed Kerr traveling wave parametric amplifier
,” arXiv:2101.05815 (2021
).27.
See https://github.com/arpitranadive/jj_metamaterial_simulation for “
github: JJ metamaterial simulation
,” 2021
.28.
M. A.
Castellanos-Beltran
and
K. W.
Lehnert
, “
Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator
,” Appl. Phys. Lett.
91
, 083509
(2007
).29.
J. Y.
Mutus
,
T. C.
White
,
R.
Barends
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
E.
Jeffrey
,
J.
Kelly
,
A.
Megrant
,
C.
Neill
,
P. J.
O'Malley
,
P.
Roushan
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
K. M.
Sundqvist
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Strong environmental coupling in a Josephson parametric amplifier
,” Appl. Phys. Lett.
104
, 263513
(2014
).30.
T.
Roy
,
S.
Kundu
,
M.
Chand
,
A. M.
Vadiraj
,
A.
Ranadive
,
N.
Nehra
,
M. P.
Patankar
,
J.
Aumentado
,
A. A.
Clerk
, and
R.
Vijay
, “
Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product
,” Appl. Phys. Lett.
107
, 262601
(2015
).31.
M. A.
Castellanos-Beltran
,
K. D.
Irwin
,
G. C.
Hilton
,
L. R.
Vale
, and
K. W.
Lehnert
, “
Amplification and squeezing of quantum noise with a tunable Josephson metamaterial
,” Nat. Phys.
4
, 929
–931
(2008
).32.
G.
Liu
,
T. C.
Chien
,
X.
Cao
,
O.
Lanes
,
E.
Alpern
,
D.
Pekker
, and
M.
Hatridge
, “
Josephson parametric converter saturation and higher order effects
,” Appl. Phys. Lett.
111
, 202603
(2017
).33.
L.
Planat
,
R.
Dassonneville
,
J. P.
Martínez
,
F.
Foroughi
,
O.
Buisson
,
W.
Hasch-Guichard
,
C.
Naud
,
R.
Vijay
,
K.
Murch
, and
N.
Roch
, “
Understanding the saturation power of Josephson parametric amplifiers made from SQUID arrays
,” Phys. Rev. Appl.
11
, 034014
(2019
).34.
T.
Yamamoto
,
K.
Inomata
,
M.
Watanabe
,
K.
Matsuba
,
T.
Miyazaki
,
W. D.
Oliver
,
Y.
Nakamura
, and
J. S.
Tsai
, “
Flux-driven Josephson parametric amplifier
,” Appl. Phys. Lett.
93
, 042510
(2008
).35.
N.
Bergeal
,
F.
Schackert
,
M.
Metcalfe
,
R.
Vijay
,
V. E.
Manucharyan
,
L.
Frunzio
,
D. E.
Prober
,
R. J.
Schoelkopf
,
S. M.
Girvin
, and
M. H.
Devoret
, “
Phase-preserving amplification near the quantum limit with a Josephson ring modulator
,” Nature
465
, 64
–68
(2010
).36.
N.
Roch
,
E.
Flurin
,
F.
Nguyen
,
P.
Morfin
,
P.
Campagne-Ibarcq
,
M. H.
Devoret
, and
B.
Huard
, “
Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit
,” Phys. Rev. Lett.
108
, 147701
(2012
).37.
C.
Eichler
,
Y.
Salathe
,
J.
Mlynek
,
S.
Schmidt
, and
A.
Wallraff
, “
Quantum-limited amplification and entanglement in coupled nonlinear resonators
,” Phys. Rev. Lett.
113
, 110502
(2014
).38.
N. E.
Frattini
,
V. V.
Sivak
,
A.
Lingenfelter
,
S.
Shankar
, and
M. H.
Devoret
, “
Optimizing the nonlinearity and dissipation of a SNAIL parametric amplifier for dynamic range
,” Phys. Rev. Appl.
10
, 054020
(2018
).39.
V. V.
Sivak
,
S.
Shankar
,
G.
Liu
,
J.
Aumentado
, and
M. H.
Devoret
, “
Josephson Array-Mode Parametric Amplifier
,” Phys. Rev. Appl.
13
, 024014
(2020
).40.
B.
Abdo
,
F.
Schackert
,
M.
Hatridge
,
C.
Rigetti
, and
M.
Devoret
, “
Josephson amplifier for qubit readout
,” Appl. Phys. Lett.
99
, 162506
(2011
).41.
A.
Metelmann
and
A. A.
Clerk
, “
Nonreciprocal photon transmission and amplification via reservoir engineering
,” Phys. Rev. X
5
, 021025
(2015
).42.
F.
Lecocq
,
L.
Ranzani
,
G. A.
Peterson
,
K.
Cicak
,
R. W.
Simmonds
,
J. D.
Teufel
, and
J.
Aumentado
, “
Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier
,” Phys. Rev. Appl.
7
, 024028
(2017
).43.
F.
Lecocq
,
L.
Ranzani
,
G. A.
Peterson
,
K.
Cicak
,
X. Y.
Jin
,
R. W.
Simmonds
,
J. D.
Teufel
, and
J.
Aumentado
, “
Efficient qubit measurement with a nonreciprocal microwave amplifier
,” Phys. Rev. Lett.
126
, 020502
(2021
).44.
45.
A. L.
Cullen
, “
A travelling-wave parametric amplifier
,” Nature
181
, 332
–332
(1958
).46.
P. K.
Tien
, “
Parametric amplification and frequency mixing in propagating circuits
,” J. Appl. Phys.
29
, 1347
–1357
(1958
).47.
A.
Cullen
, “
Theory of the travelling-wave parametric amplifier
,” Proc. IEE-Part B
107
(6
), 101
–107
(1960
).48.
A.
Sörenssen
, “
A theoretical investigation of a travelling wave parametric amplifier
,” Appl. Sci. Res., Sect. B
10
, 463
–477
(1962
).49.
M. J.
Feldman
,
P. T.
Parrish
, and
R. Y.
Chiao
, “
Parametric amplification by unbiased Josephson junctions
,” J. Appl. Phys.
46
, 4031
–4042
(1975
).50.
S.
Wahlsten
,
S.
Rudner
, and
T.
Claeson
, “
Parametric amplification in arrays of Josephson tunnel junctions
,” Appl. Phys. Lett.
30
, 298
–300
(1977
).51.
M.
Sweeny
and
R.
Mahler
, “
A travelling-wave parametric amplifier utilizing Josephson junctions
,” IEEE Trans. Magn.
21
, 654
–655
(1985
).52.
B.
Yurke
,
M. L.
Roukes
,
R.
Movshovich
, and
A. N.
Pargellis
, “
A low-noise series-array Josephson junction parametric amplifier
,” Appl. Phys. Lett.
69
, 3078
–3080
(1996
).53.
D. H.
Slichter
,
L.
Spietz
,
O.
Naaman
,
J.
Aumentado
, and
I.
Siddiqi
, “
Progress towards a broadband traveling wave Josephson parametric amplifier
,” in APS Meeting Abstracts
(
APS
, 2010
), p. T26.009
.54.
D. H.
Slichter
, “
Quantum jumps and measurement backaction in a superconducting qubit
,” Ph.D. thesis (
University of California
,
Berkeley
, 2011
).55.
B.
Ho Eom
,
P. K.
Day
,
H. G.
Leduc
, and
J.
Zmuidzinas
, “
A wideband, low-noise superconducting amplifier with high dynamic range
,” Nat. Phys.
8
, 623
–627
(2012
).56.
O.
Yaakobi
,
L.
Friedland
,
C.
Macklin
, and
I.
Siddiqi
, “
Parametric amplification in Josephson junction embedded transmission lines
,” Phys. Rev. B
87
, 144301
(2013
).57.
K.
O'Brien
,
C.
Macklin
,
I.
Siddiqi
, and
X.
Zhang
, “
Resonant phase matching of Josephson junction traveling wave parametric amplifiers
,” Phys. Rev. Lett.
113
, 157001
(2014
).58.
C.
Macklin
,
K.
O'Brien
,
D.
Hover
,
M. E.
Schwartz
,
V.
Bolkhovsky
,
X.
Zhang
,
W. D.
Oliver
, and
I.
Siddiqi
, “
A near quantum-limited Josephson traveling-wave parametric amplifier
,” Science
350
, 307
–310
(2015
).59.
A. B.
Zorin
, “
Josephson traveling-wave parametric amplifier with three-wave mixing
,” Phys. Rev. Appl.
6
, 034006
(2016
).60.
M. T.
Bell
and
A.
Samolov
, “
Traveling-wave parametric amplifier based on a chain of coupled asymmetric SQUIDs
,” Phys. Rev. Appl.
4
, 024014
(2015
).61.
N. E.
Frattini
,
U.
Vool
,
S.
Shankar
,
A.
Narla
,
K. M.
Sliwa
, and
M. H.
Devoret
, “
3-wave mixing Josephson dipole element
,” Appl. Phys. Lett.
110
, 222603
(2017
).62.
M. R.
Vissers
,
R. P.
Erickson
,
H. S.
Ku
,
L.
Vale
,
X.
Wu
,
G. C.
Hilton
, and
D. P.
Pappas
, “
Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing
,” Appl. Phys. Lett.
108
, 012601
(2016
).63.
L.
Ranzani
,
M.
Bal
,
K. C.
Fong
,
G.
Ribeill
,
X.
Wu
,
J.
Long
,
H. S.
Ku
,
R. P.
Erickson
,
D.
Pappas
, and
T. A.
Ohki
, “
Kinetic inductance traveling-wave amplifiers for multiplexed qubit readout
,” Appl. Phys. Lett.
113
, 242602
(2018
).64.
T. C.
White
,
J. Y.
Mutus
,
I. C.
Hoi
,
R.
Barends
,
B.
Campbell
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
E.
Jeffrey
,
J.
Kelly
,
A.
Megrant
,
C.
Neill
,
P. J.
O'Malley
,
P.
Roushan
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
S.
Chaudhuri
,
J.
Gao
, and
J. M.
Martinis
, “
Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching
,” Appl. Phys. Lett.
106
, 242601
(2015
).65.
A. A.
Adamyan
,
S. E.
De Graaf
,
S. E.
Kubatkin
, and
A. V.
Danilov
, “
Superconducting microwave parametric amplifier based on a quasi-fractal slow propagation line
,” J. Appl. Phys.
119
, 083901
(2016
).66.
S.
Chaudhuri
,
D.
Li
,
K. D.
Irwin
,
C.
Bockstiegel
,
J.
Hubmayr
,
J. N.
Ullom
,
M. R.
Vissers
, and
J.
Gao
, “
Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines
,” Appl. Phys. Lett.
110
, 152601
(2017
).67.
A. B.
Zorin
,
M.
Khabipov
,
J.
Dietel
, and
R.
Dolata
, “
Traveling-wave parametric amplifier based on three-wave mixing in a Josephson metamaterial
,” in 2017 16th International Superconductive Electronics Conference (ISEC)
(
Institute of Electrical and Electronics Engineers Inc
., 2018
), pp. 1
–3
.68.
A.
Miano
and
O. A.
Mukhanov
, “
Symmetric traveling wave parametric amplifier
,” IEEE Trans. Appl. Supercond.
29
, 1501706
(2019
).69.
S.
Goldstein
,
N.
Kirsh
,
E.
Svetitsky
,
Y.
Zamir
,
O.
Hachmo
,
C. E. M.
De Oliveira
, and
N.
Katz
, “
Four wave-mixing in a microstrip kinetic inductance travelling wave parametric amplifier
,” Appl. Phys. Lett.
116
, 152602
(2020
).70.
M.
Malnou
,
M.
Vissers
,
J.
Wheeler
,
J.
Aumentado
,
J.
Hubmayr
,
J.
Ullom
, and
J.
Gao
, “
Three-wave mixing kinetic inductance traveling-wave amplifier with near-quantum-limited noise performance
,” PRX Quantum
2
, 010302
(2021
).71.
S.
Shu
,
N.
Klimovich
,
B. H.
Eom
,
A. D.
Beyer
,
R. B.
Thakur
,
H. G.
Leduc
, and
P. K.
Day
, “
Nonlinearity and wide-band parametric amplification in a (Nb,Ti)N microstrip transmission line
,” Phys. Rev. Res.
3
, 023184
(2021
).72.
A. D.
O'Connell
,
M.
Ansmann
,
R. C.
Bialczak
,
M.
Hofheinz
,
N.
Katz
,
E.
Lucero
,
C.
McKenney
,
M.
Neeley
,
H.
Wang
,
E. M.
Weig
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Microwave dielectric loss at single photon energies and millikelvin temperatures
,” Appl. Phys. Lett.
92
, 112903
(2008
).73.
H.
Paik
and
K. D.
Osborn
, “
Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits
,” Appl. Phys. Lett.
96
, 072505
(2010
).74.
F.
Boussaha
,
S.
Beldi
,
A.
Monfardini
,
J.
Hu
,
M.
Calvo
,
C.
Chaumont
,
F.
Levy-Bertrand
,
T.
Vacelet
,
A.
Traini
,
J.
Firminy
,
M.
Piat
, and
F.
Reix
, “
Development of TiN vacuum-gap capacitor lumped-element kinetic inductance detectors
,” J. Low Temp. Phys.
199
, 994
–1003
(2020
).75.
K.
Peng
,
M.
Naghiloo
,
J.
Wang
,
G. D.
Cunningham
,
Y.
Ye
, and
K. P.
O'Brien
, “
Near-ideal quantum efficiency with a Floquet mode traveling wave parametric amplifier
,” arXiv:2104.08269 (2021
).76.
T.
Dixon
,
J. W.
Dunstan
,
G. B.
Long
,
J. M.
Williams
,
P. J.
Meeson
, and
C. D.
Shelly
, “
Capturing complex behavior in Josephson traveling-wave parametric amplifiers
,” Phys. Rev. Appl.
14
, 034058
(2020
).77.
A.
Zorin
, “
Flux-driven Josephson traveling-wave parametric amplifier
,” Phys. Rev. Appl.
12
, 044051
(2019
).78.
K. M.
Sliwa
,
M.
Hatridge
,
A.
Narla
,
S.
Shankar
,
L.
Frunzio
,
R. J.
Schoelkopf
, and
M. H.
Devoret
, “
Reconfigurable Josephson circulator/directional amplifier
,” Phys. Rev. X
5
, 041020
(2015
).79.
L.
Ranzani
,
S.
Kotler
,
A. J.
Sirois
,
M. P.
Defeo
,
M.
Castellanos-Beltran
,
K.
Cicak
,
L. R.
Vale
, and
J.
Aumentado
, “
Wideband isolation by frequency conversion in a Josephson-junction transmission line
,” Phys. Rev. Appl.
8
, 054035
(2017
).80.
M.
Naghiloo
,
K.
Peng
,
Y.
Ye
,
G.
Cunningham
, and
K. P.
O'Brien
, “
Broadband microwave isolation with adiabatic mode conversion in coupled superconducting transmission lines
,” arXiv:2103.07793 (2021
).81.
S. R.
Bandler
,
J. A.
Chervenak
,
A. M.
Datesman
,
A. M.
Devasia
,
M.
DiPirro
,
K.
Sakai
,
S. J.
Smith
,
T. R.
Stevenson
,
W.
Yoon
,
D.
Bennett
,
B.
Mates
,
D.
Swetz
,
J. N.
Ullom
,
K. D.
Irwin
, and
M. E.
Eckart
, “
Lynx x-ray microcalorimeter
,” J. Astron Telesc., Instrum., Syst.
5
, 021017
(2019
).82.
A. L.
Grimsmo
and
A.
Blais
, “
Squeezing and quantum state engineering with Josephson travelling wave amplifiers
,” npj Quantum Inf.
3
, 20
(2017
).83.
L.
Fasolo
,
A.
Greco
,
E.
Enrico
,
F.
Illuminati
,
R. L.
Franco
,
D.
Vitali
, and
P.
Livreri
, “
Josephson travelling wave parametric amplifiers as non-classical light source for microwave quantum illumination
,” arXiv:2106.00522 (2021
).84.
A. L.
Grimsmo
,
B.
Royer
,
J. M.
Kreikebaum
,
Y.
Ye
,
K.
O'Brien
,
I.
Siddiqi
, and
A.
Blais
, “
Quantum metamaterial for broadband detection of single microwave photons
,” Phys. Rev. Appl.
15
, 034074
(2021
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.