Surface acoustic waves (SAWs) have large potential to realize quantum-optics-like experiments with single flying electrons employing their spin or charge degree of freedom. For such quantum applications, highly efficient trapping of the electron in a specific moving quantum dot (QD) of a SAW train plays a key role. Probabilistic transport over multiple moving minima would cause uncertainty in synchronization that is detrimental for coherence of entangled flying electrons and in-flight quantum operations. It is thus of central importance to identify the device parameters enabling electron transport within a single SAW minimum. A detailed experimental investigation of this aspect is so far missing. Here, we fill this gap by demonstrating time-of-flight measurements for a single electron that is transported via a SAW train between distant stationary QDs. Our measurements reveal the in-flight distribution of the electron within the moving acousto-electric quantum dots of the SAW train. Increasing the acousto-electric amplitude, we observe the threshold necessary to confine the flying electron at a specific, deliberately chosen SAW minimum. Investigating the effect of a barrier along the transport channel, we also benchmark the robustness of SAW-driven electron transport against stationary potential variations. Our results pave the way for highly controlled transport of electron qubits in a SAW-driven platform for quantum experiments.

1.
C. J. B.
Ford
, “
Transporting and manipulating single electrons in surface-acoustic-wave minima
,”
Phys. Status Solidi B
254
,
1600658
(
2017
).
2.
C.
Bäuerle
,
C. D.
Glattli
,
T.
Menuier
 et al., “
Coherent control of single electrons: A review of current progress
,”
Rep. Prog. Phys.
81
,
056503
(
2018
).
3.
P.
Delsing
,
A. N.
Cleland
,
M.
Schuetz
 et al., “
The 2019 surface acoustic waves roadmap
,”
J. Phys. D
52
,
353001
(
2019
).
4.
M. V.
Gustafsson
,
T.
Aref
,
A. F.
Kockum
 et al., “
Propagating phonons coupled to an artificial atom
,”
Science
346
,
207
211
(
2014
).
5.
R.
Manenti
,
A. F.
Kockum
,
A.
Patterson
 et al., “
Circuit quantum acoustodynamics with surface acoustic waves
,”
Nat. Commun.
8
,
975
(
2017
).
6.
G.
Andersson
,
B.
Suri
,
L.
Guo
 et al., “
Non-exponential decay of a giant artificial atom
,”
Nat. Phys.
15
,
1123
1127
(
2019
).
7.
K. J.
Satzinger
,
Y. P.
Zhong
,
H. S.
Chang
 et al., “
Quantum control of surface acoustic-wave phonons
,”
Nature
563
,
661
665
(
2018
).
8.
A.
Bienfait
,
K. J.
Stazinger
,
Y. P.
Zhong
 et al., “
Phonon-mediated quantum state transfer and remote qubit entanglement
,”
Science
364
(
6438
),
368
371
(
2019
).
9.
L. M. K.
Vandersypen
,
H.
Bluhm
,
J. S.
Clarke
 et al., “
Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
,”
npj Quantum Inf.
3
,
34
(
2017
).
10.
A.
Bertoni
,
P.
Bordone
,
R.
Brunetti
 et al., “
Quantum logic gates based on coherent electron transport in quantum wires
,”
Phys. Rev. Lett.
84
,
5912
5915
(
2000
).
11.
S.
Hermelin
,
S.
Takada
,
M.
Yamamoto
 et al., “
Electrons surfing on a sound wave as a platform for quantum optics with flying electrons
,”
Nature
477
,
435
(
2011
).
12.
R. P. G.
McNeil
,
M.
Kataoka
,
C. J. B.
Ford
 et al., “
On-demand single-electron transfer between distant quantum dots
,”
Nature
477
,
439
(
2011
).
13.
B.
Bertrand
,
S.
Hermelin
,
S.
Takada
 et al., “
Fast spin information transfer between distant quantum dots using individual electrons
,”
Nat. Nanotechnol.
11
,
672
(
2016
).
14.
S.
Takada
,
H.
Edlbauer
,
H.
Lepage
 et al., “
Sound-driven single-electron transfer in a circuit of coupled quantum rails
,”
Nat. Commun.
10
,
4557
(
2019
).
15.
B.
Jadot
,
P.-A.
Mortemousque
,
E.
Chanrion
 et al., “
Distant spin entanglement via fast and coherent electron shuttling
,”
Nat. Nanotechnol.
16
,
570
575
(
2021
).
16.
G.
Sukhodub
,
F.
Hohls
, and
R. J.
Haug
, “
Observation of an interedge magnetoplasmon mode in a degenerate two-dimensional electron gas
,”
Phys. Rev. Lett.
93
,
196801
(
2004
).
17.
H.
Kamata
,
N.
Kumada
,
M.
Hashisaka
 et al., “
Fractionalized wave packets from an artificial Tomonaga–Luttinger liquid
,”
Nat. Nanotechnol.
9
,
177
181
(
2014
).
18.
M.
Kataoka
,
N.
Johnson
,
C.
Emary
 et al., “
Time-of-flight measurements of single-electron wave packets in quantum hall edge states
,”
Phys. Rev. Lett.
116
,
126803
(
2016
).
19.
G.
Roussely
,
E.
Arrighi
,
G.
Giorgos
 et al., “
Unveiling the bosonic nature of an ultrashort few-electron pulse
,”
Nat. Commun.
9
,
2811
(
2018
).
20.
The SAW wavelength λSAW is determined by the period of the metallic fingers of the IDT. For the presently investigated device the SAW wavelength is 1 μm. From the measured resonance frequency of the IDT, f0= 2.86 GHz, the SAW velocity is deduced from vSAW=λSAWf0.
21.
R. J.
Schneble
,
M.
Kataoka
,
C. J. B.
Ford
 et al., “
Quantum-dot thermometry of electron heating by surface acoustic waves
,”
Appl. Phys. Lett
89
,
122104
(
2006
).
22.
J. A.
Nixon
and
J. H.
Davies
, “
Potential fluctuations in heterostructure devices
,”
Phys. Rev. B
41
,
7929
(
1990
).
23.
S.
Birner
,
T.
Zibold
,
T.
Andlauer
 et al., “
nextnano: General purpose 3-D simulations
,”
IEEE Trans. Electron Devices
54
,
2137
2142
(
2007
).
24.
H.
Hou
,
Y.
Chung
,
G.
Rughoobur
 et al., “
Experimental verification of electrostatic boundary conditions in gate-patterned quantum devices
,”
J. Phys. D
51
,
244004
(
2018
).
25.
S.
Büyükköse
,
B.
Vratzov
,
D.
Ataç
 et al., “
Ultrahigh-frequency surface acoustic wave transducers on ZnO/SiO2/Si using nanoimprint lithography
,”
Nanotechnology
23
,
315303
(
2012
).
26.
E. D. S.
Nysten
,
A.
Rastelli
, and
H. J.
Krenner
, “
A hybrid (Al)GaAs-LiNbO3 surface acoustic wave resonator for cavity quantum dot optomechanics
,”
Appl. Phys. Lett.
117
,
121106
(
2020
).
27.
M. K.
Ekström
,
T.
Aref
,
J.
Runeson
 et al., “
Surface acoustic wave unidirectional transducers for quantum applications
,”
Appl. Phys. Lett.
110
,
073105
(
2017
).
28.
É.
Dumur
,
K. J.
Satzinger
,
G. A.
Peairs
 et al., “
Unidirectional distributed acoustic reflection transducers for quantum applications
,”
Appl. Phys. Lett.
114
,
223501
(
2019
).
29.
F. J. R.
Schülein
,
E.
Zallo
,
P.
Atkinson
 et al., “
Fourier synthesis of radiofrequency nanomechanical pulses with different shapes
,”
Nat. Nanotechnol.
10
,
512
(
2015
).
30.
M.
Weiß
,
A. L.
Hörner
,
E.
Zallo
 et al., “
Multiharmonic frequency-chirped transducers for surface-acoustic-wave optomechanics
,”
Phys. Rev. Appl.
9
,
014004
(
2018
).
31.
C. H. W.
Barnes
,
J. M.
Shilton
, and
A. M.
Robinson
, “
Quantum computation using electrons trapped by surface acoustic waves
,”
Phys. Rev. B
62
,
8410
8419
(
2000
).
32.
D. R. M.
Arvidsson-Shukur
,
H. V.
Lepage
,
E. T.
Owen
 et al., “
Protocol for fermionic positive-operator-valued measures
,”
Phys. Rev. A
96
,
052305
(
2017
).
33.
H. V.
Lepage
,
A. A.
Lasek
,
D. R. M.
Arvidsson-Shukur
 et al., “
Entanglement generation via power-of-swap operations between dynamic electron-spin qubits
,”
Phys. Rev. A
101
,
022329
(
2020
).
34.
M. J. A.
Schuetz
,
J.
Knorzer
,
G.
Giedke
 et al., “
Acoustic traps and lattices for electrons in semiconductors
,”
Phys. Rev. X
7
,
041019
(
2017
).
35.
J.
Cunningham
,
V. I.
Talyanskii
,
J. M.
Shilton
 et al., “
Quantized acoustoelectric current - An alternative route towards a standard of electric current
,”
J. Low Temp. Phys.
118
,
555
(
2000
).

Supplementary Material

You do not currently have access to this content.