Neural networks have proven to be efficient for a number of practical applications ranging from image recognition to identifying phase transitions in quantum physics models. In this paper, we investigate the application of neural networks to state classification in a single-shot quantum measurement. We use dispersive readout of a superconducting transmon circuit to demonstrate an increase in assignment fidelity for both two and three state classifications. More importantly, our method is ready for on-the-fly data processing without overhead or need for large data transfer to a hard drive. In addition, we demonstrate the capacity of neural networks to be trained against experimental imperfections, such as phase drift of a local oscillator in a heterodyne detection scheme.

1.
E.
Zahedinejad
,
J.
Ghosh
, and
B. C.
Sanders
, “
Designing high-fidelity single-shot three-qubit gates: A machine-learning approach
,”
Phys. Rev. Appl.
6
,
054005
(
2016
).
2.
M.
August
and
X.
Ni
, “
Using recurrent neural networks to optimize dynamical decoupling for quantum memory
,”
Phys. Rev. A
95
,
012335
(
2017
).
3.
Y.
Ding
,
Y.
Ban
,
J. D.
Martín-Guerrero
,
E.
Solano
,
J.
Casanova
, and
X.
Chen
, “
Breaking adiabatic quantum control with deep learning
,”
Phys. Rev. A
103
,
L040401
(
2021
).
4.
Y.
Baum
,
M.
Amico
,
S.
Howell
,
M.
Hush
,
M.
Liuzzi
,
P.
Mundada
,
T.
Merkh
,
A. R. R.
Carvalho
, and
M. J.
Biercuk
, “
Experimental deep reinforcement learning for error-robust gateset design on a superconducting quantum computer
,” arXiv:2105.01079 (
2021
).
5.
B. S.
Rem
,
N.
Käming
,
M.
Tarnowski
,
L.
Asteria
,
N.
Fläschner
,
C.
Becker
,
K.
Sengstock
, and
C.
Weitenberg
, “
Identifying quantum phase transitions using artificial neural networks on experimental data
,”
Nat. Phys.
15
,
917
(
2019
).
6.
X.-Y.
Dong
,
F.
Pollmann
, and
X.-F.
Zhang
, “
Machine learning of quantum phase transitions
,”
Phys. Rev. B
99
,
121104
(
2019
).
7.
A. M.
Palmieri
,
E.
Kovlakov
,
F.
Bianchi
,
D.
Yudin
,
S.
Straupe
,
J. D.
Biamonte
, and
S.
Kulik
, “
Experimental neural network enhanced quantum tomography
,”
npj Quantum Inf.
6
,
20
(
2020
).
8.
J. P.
Zwolak
,
T.
McJunkin
,
S. S.
Kalantre
,
J.
Dodson
,
E.
MacQuarrie
,
D.
Savage
,
M.
Lagally
,
S.
Coppersmith
,
M. A.
Eriksson
, and
J. M.
Taylor
, “
Autotuning of double-dot devices in situ with machine learning
,”
Phys. Rev. Appl.
13
,
034075
(
2020
).
9.
R.
Durrer
,
B.
Kratochwil
,
J.
Koski
,
A.
Landig
,
C.
Reichl
,
W.
Wegscheider
,
T.
Ihn
, and
E.
Greplova
, “
Automated tuning of double quantum dots into specific charge states using neural networks
,”
Phys. Rev. Appl.
13
,
054019
(
2020
).
10.
L.
Hu
,
S.-H.
Wu
,
W.
Cai
,
Y.
Ma
,
X.
Mu
,
Y.
Xu
,
H.
Wang
,
Y.
Song
,
D.-L.
Deng
,
C.-L.
Zou
, and
L.
Sun
, “
Quantum generative adversarial learning in a superconducting quantum circuit
,”
Sci. Adv.
5
,
eaav2761
(
2019
).
11.
V.
Cimini
,
M.
Barbieri
,
N.
Treps
,
M.
Walschaers
, and
V.
Parigi
, “
Neural networks for detecting multimode Wigner negativity
,”
Phys. Rev. Lett.
125
,
160504
(
2020
).
12.
M. P. V.
Stenberg
,
O.
Köhn
, and
F. K.
Wilhelm
, “
Characterization of decohering quantum systems: Machine learning approach
,”
Phys. Rev. A
93
,
012122
(
2016
).
13.
E.
Flurin
,
L. S.
Martin
,
S.
Hacohen-Gourgy
, and
I.
Siddiqi
, “
Using a recurrent neural network to reconstruct quantum dynamics of a superconducting qubit from physical observations
,”
Phys. Rev. X
10
,
011006
(
2020
).
14.
A. A.
Gentile
,
B.
Flynn
,
S.
Knauer
,
N.
Wiebe
,
S.
Paesani
,
C. E.
Granade
,
J. G.
Rarity
,
R.
Santagati
, and
A.
Laing
, “
Learning models of quantum systems from experiments
,”
Nat. Phys.
17
,
837
(
2021
).
15.
A. B.
Mei
,
I.
Milosavljevic
,
A. L.
Simpson
,
V. A.
Smetanka
,
C. P.
Feeney
,
S. M.
Seguin
,
S. D.
Ha
,
W.
Ha
, and
M. D.
Reed
, “
Optimization of quantum-dot qubit fabrication via machine learning
,”
Appl. Phys. Lett.
118
,
204001
(
2021
).
16.
E.
Magesan
,
A. D.
Gambetta
,
J. M.
Córcoles
, and
J. M.
Chow
, “
Machine learning for discriminating quantum measurement trajectories and improving readout
,”
Phys. Rev. Lett.
114
,
200501
(
2015
).
17.
C.
Dickel
,
J. J.
Wesdorp
,
N. K.
Langford
,
S.
Peiter
,
R.
Sagastizabal
,
A.
Bruno
,
B.
Criger
,
F.
Motzoi
, and
L.
DiCarlo
, “
Chip-to-chip entanglement of transmon qubits using engineered measurement fields
,”
Phys. Rev. B
97
,
064508
(
2018
).
18.
S.
Kono
,
K.
Koshino
,
Y.
Tabuchi
,
A.
Noguchi
, and
Y.
Nakamura
, “
Quantum non-demolition detection of an itinerant microwave photon
,”
Nat. Phys.
14
,
546
(
2018
).
19.
L. A.
Martinez
,
Y. J.
Rosen
, and
J. L.
DuBois
, “
Improving qubit readout with hidden markov models
,”
Phys. Rev. A
102
,
062426
(
2020
).
20.
B.
Lienhard
,
A.
Vepsäläinen
,
L. C. G.
Govia
,
C. R.
Hoffer
,
J. Y.
Qiu
,
D.
Ristè
,
M.
Ware
,
D.
Kim
,
R.
Winik
,
A.
Melville
,
B.
Niedzielski
,
J.
Yoder
,
G. J.
Ribeill
,
T. A.
Ohki
,
H. K.
Krovi
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Deep neural network discrimination of multiplexed superconducting qubit states
,” arXiv:2102.12481 (
2021
).
21.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Kopf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, “
Pytorch: An imperative style, high-performance deep learning library
,” in
Advances in Neural Information Processing Systems
, edited by
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d'Alché-Buc
,
E.
Fox
, and
R.
Garnett
(
Curran Associates, Inc
.,
2019
), Vol.
32
, pp.
8024
8035
.
22.
C.
Eichler
,
Y.
Salathe
,
J.
Mlynek
,
S.
Schmidt
, and
A.
Wallraff
, “
Quantum-limited amplification and entanglement in coupled nonlinear resonators
,”
Phys. Rev. Lett.
113
,
110502
(
2014
).
23.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
,” arXiv:1502.01852 (
2015
).
24.
V.
Nair
and
G. E.
Hinton
, “
Rectified linear units improve restricted Boltzmann machines
,” in
Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML'10
(
Omnipress
,
Madison
,
Winsconsin
,
2010
), p.
807
814
.
25.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2017
).
26.
R.
Navarathna
and
T.
Jones
(
2021
). “APL paper files,”
The University of Queensland
,

Supplementary Material

You do not currently have access to this content.