As the first-generation semiconductor, silicon (Si) exhibits promising prospects in thermoelectric (TE) convention application with the advantages of un-toxic, abundant, robust, and compliant to the integrated circuit. However, Si-based TE materials are always implemented for high-temperature application and deficient at room temperature (RT) ambience. This study displays an N-type Si1−x−yGexSny thin film by carrying out the strategy of metallic modulation doping for enhancing its power factor (PF). It was distinct to observe the extra carriers poured from the precipitated Sn particles without prominent degradation of mobility while sustaining appreciable thermal conductivity. The PF of 12.21 μWcm1K2 and zT of 0.27 were achieved at 125 °C, which illustrated the significant potential for implementation at near RT ambiance.

1.
P.
Sun
,
K. R.
Kumar
,
M.
Lyu
,
Z.
Wang
,
J.
Xiang
, and
W.
Zhang
,
Innovation
2
,
100101
(
2021
).
2.
W.
Xu
,
Z.
Zhang
,
C.
Liu
,
J.
Gao
,
Z.
Ye
,
C.
Chen
,
Y.
Peng
,
X.
Bai
, and
L.
Miao
,
J. Adv. Ceram.
10
,
860
870
(
2021
).
3.
C.
Candolfi
,
S. E.
Oualid
,
D.
Ibrahim
,
S.
Misra
,
O. E.
Hamouli
,
A.
Léon
,
A.
Dauscher
,
P.
Masschelein
,
P.
Gall
,
P.
Gougeon
,
C.
Semprimoschnig
, and
B.
Lenoir
,
CEAS Space J.
13
,
325
(
2021
).
4.
H.
Lai
,
Y.
Peng
,
J.
Gao
,
M.
Kurosawa
,
O.
Nakatsuka
,
T.
Takeuchi
, and
L.
Miao
,
Jpn. J. Appl. Phys., Part 1
60
,
SA0803
(
2021
).
5.
R.
He
,
W.
Heyn
,
F.
Thiel
,
N.
Pérez
,
C.
Damm
,
D.
Pohl
,
B.
Rellinghaus
,
C.
Reimann
,
M.
Beier
,
J.
Friedrich
,
H.
Zhu
,
Z.
Ren
,
K.
Nielsch
, and
G.
Schierning
,
J. Materiomics
5
,
15
(
2019
).
6.
A.
Nozariasbmarz
,
A.
Agarwal
,
Z. A.
Coutant
,
M. J.
Hall
,
J.
Liu
,
R.
Liu
,
A.
Malhotra
,
P.
Norouzzadeh
,
M. C.
Öztürk
,
V. P.
Ramesh
,
Y.
Sargolzaeiaval
,
F.
Suarez
, and
D.
Vashaee
,
Jpn. J. Appl. Phys., Part 1
56
,
05DA04
(
2017
).
7.
J.
Mao
,
Z.
Liu
, and
Z.
Ren
,
npj Quantum Mater.
1
,
16028
(
2016
).
8.
X.-Q.
Chen
,
J.
Liu
, and
J.
Li
,
Innovation
2
,
100134
(
2021
).
9.
C.
Gayner
and
Y.
Amouyal
,
Adv. Funct. Mater.
30
,
1901789
(
2020
).
10.
B.
Yu
,
M.
Zebarjadi
,
H.
Wang
,
K.
Lukas
,
H.
Wang
,
D.
Wang
,
C.
Opeil
,
M.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Nano Lett.
12
,
2077
(
2012
).
11.
Y.
Zhang
,
J.
Brorsson
,
R.
Qiu
, and
A. E. C.
Palmqvist
,
Adv. Electron. Mater.
7
,
2000782
(
2021
).
12.
Y.
Liu
,
D.
Cadavid
,
M.
Ibáñez
,
S.
Ortega
,
S.
Martí-Sánchez
,
O.
Dobrozhan
,
M. V.
Kovalenko
,
J.
Arbiol
, and
A.
Cabot
,
APL Mater.
4
,
104813
(
2016
).
13.
M.
Ibáñez
,
Z.
Luo
,
A.
Genç
,
L.
Piveteau
,
S.
Ortega
,
D.
Cadavid
,
O.
Dobrozhan
,
Y.
Liu
,
M.
Nachtegaal
,
M.
Zebarjadi
,
J.
Arbiol
,
M. V.
Kovalenko
, and
A.
Cabot
,
Nat. Commun.
7
,
10766
(
2016
).
14.
Y.
Peng
,
L.
Miao
,
J.
Gao
,
C.
Liu
,
M.
Kurosawa
,
O.
Nakatsuka
, and
S.
Zaima
,
Sci. Rep.
9
,
14342
(
2019
).
15.
Y.
Peng
,
H.
Lai
,
C.
Liu
,
J.
Gao
,
M.
Kurosawa
,
O.
Nakatsuka
,
T.
Takeuchi
,
S.
Zaima
,
S.
Tanemura
, and
L.
Miao
,
Appl. Phys. Lett.
117
,
053903
(
2020
).
16.
J.
Lu
,
R.
Guo
,
W.
Dai
, and
B.
Huang
,
Nanoscale
7
,
7331
(
2015
).
17.
J.
Kouvetakis
,
J.
Menendez
, and
J.
Tolle
,
Solid State Phenom.
156–158
,
77
(
2009
).
18.
D.
Wang
,
L.
Liu
,
M.
Chen
, and
H.
Zhuang
,
Acta Mater.
199
,
443
(
2020
).
19.
D.
Wang
,
L.
Liu
,
W.
Huang
, and
H. L.
Zhuang
,
J. Appl. Phys.
126
,
225703
(
2019
).
20.
N.
Chen
,
Q.
Tao
,
L.
Wei
,
Y.
Bai
, and
J.
Chen
,
J. Phys. D: Appl. Phys.
50
,
435303
(
2017
).
21.
A.
Monshi
,
M. R.
Foroughi
, and
M. R.
Monshi
,
World J. Nano Sci. Eng.
2
,
154
(
2012
).
22.
V.
Neimash
,
V.
Poroshin
,
P.
Shepeliavyi
,
V.
Yukhymchuk
,
V.
Melnyk
,
A.
Kuzmich
,
V.
Makara
, and
A. O.
Goushcha
,
J. Appl. Phys.
114
,
213104
(
2013
).
23.
K.
Kusano
,
A.
Yamamoto
,
M.
Nakata
,
T.
Suemasu
, and
K.
Toko
,
ACS Appl. Energy Mater.
2018
,
8b00899
.
24.
T.
Motooka
and
O. W.
Holland
,
Appl. Phys. Lett.
61
,
3005
(
1992
).
25.
S.
Ahmad
,
A.
Singh
,
A.
Bohra
,
R.
Basu
,
S.
Bhattacharya
,
R.
Bhatt
,
K. N.
Meshram
,
M.
Roy
,
S. K.
Sarkar
,
Y.
Hayakawa
,
A. K.
Debnath
,
D. K.
Aswal
, and
S. K.
Gupta
,
Nano Energy
27
,
282
(
2016
).
26.
Z.
Wang
,
L. P. H.
Jeurgens
, and
E. J.
Mittemeijer
,
Metal-Induced Crystallization: Fundamentals and Applications
(
Jenny Stanford Publishing
,
2015
).
27.
Z.
Wang
,
L. P. H.
Jeurgens
,
J. Y.
Wang
, and
E. J.
Mittemeijer
,
Adv. Eng. Mater.
11
,
131
(
2009
).
28.
M.
Koirala
,
H.
Zhao
,
M.
Pokharel
,
S.
Chen
,
T.
Dahal
,
C.
Opeil
,
G.
Chen
, and
Z.
Ren
,
Appl. Phys. Lett.
102
,
213111
(
2013
).
29.
J.
Wang
,
J.-B.
Li
,
H.-Y.
Yu
,
J.
Li
,
H.
Yang
,
X.
Yaer
,
X.-H.
Wang
, and
H.-M.
Liu
,
ACS Appl. Mater. Interfaces
12
,
2687
(
2020
).
30.
C. B.
Vining
,
W.
Laskow
,
J. O.
Hanson
,
R. R.
Van der Beck
, and
P. D.
Gorsuch
,
J. Appl. Phys.
69
,
4333
(
1991
).

Supplementary Material

You do not currently have access to this content.