Implementing guided-wave technologies in mechanical systems has always been a significant challenge due to losses associated with defects and sharp angles. Inspired by quantum Hall effects in condensed matter physics, mechanical topological insulators (TIs) have recently addressed these issues using efficient and robust signal transport supported by backscattering-immune topological protection. In this Letter, we demonstrate the first mechanical TI-based multiplexer/demultiplexer using acoustic waves. Triangular arrays of circular piezoelectric disks bonded to an aluminum host medium, shunted through external circuits with equivalent negative capacitance, break inversion symmetry and create topologically protected interface states. Combined with programmable switches, the device enables acoustic waves to travel efficiently from an input source to multiple output receivers, or vice versa, via dynamic topological interfaces. The proposed acoustic multiplexer/demultiplexer is envisioned to find application in wave-based devices, as an accompaniment to ubiquitous surface acoustic wave filtering used in communication devices, such as cell phones, radios, and computer peripherals.

1.
C. L.
Kane
and
E. J.
Mele
, “
Quantum spin Hall effect in graphene
,”
Phys. Rev. Lett.
95
,
226801
(
2005
).
2.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
(
2010
).
3.
F.
Haldane
and
S.
Raghu
, “
Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry
,”
Phys. Rev. Lett.
100
,
013904
(
2008
).
4.
A. B.
Khanikaev
,
S. H.
Mousavi
,
W.-K.
Tse
,
M.
Kargarian
,
A. H.
MacDonald
, and
G.
Shvets
, “
Photonic topological insulators
,”
Nat. Mater.
12
,
233
(
2013
).
5.
M.
Hafezi
,
S.
Mittal
,
J.
Fan
,
A.
Migdall
, and
J.
Taylor
, “
Imaging topological edge states in silicon photonics
,”
Nat. Photonics
7
,
1001
(
2013
).
6.
A. B.
Khanikaev
and
G.
Shvets
, “
Two-dimensional topological photonics
,”
Nat. Photonics
11
,
763
(
2017
).
7.
J.
Paulose
,
B. G-g
Chen
, and
V.
Vitelli
, “
Topological modes bound to dislocations in mechanical metamaterials
,”
Nat. Phys.
11
,
153
(
2015
).
8.
R.
Süsstrunk
and
S. D.
Huber
, “
Observation of phononic helical edge states in a mechanical topological insulator
,”
Science
349
,
47
(
2015
).
9.
R.
Fleury
,
D. L.
Sounas
,
C. F.
Sieck
,
M. R.
Haberman
, and
A.
Alù
, “
Sound isolation and giant linear nonreciprocity in a compact acoustic circulator
,”
Science
343
,
516
(
2014
).
10.
M.
Miniaci
,
R.
Pal
,
B.
Morvan
, and
M.
Ruzzene
, “
Experimental observation of topologically protected helical edge modes in patterned elastic plates
,”
Phys. Rev. X
8
,
031074
(
2018
).
11.
A.
Darabi
,
X.
Ni
,
M.
Leamy
, and
A.
Alù
, “
Reconfigurable floquet elastodynamic topological insulator based on synthetic angular momentum bias
,”
Sci. Adv.
6
,
eaba8656
(
2020
).
12.
C.
Kane
and
T.
Lubensky
, “
Topological boundary modes in isostatic lattices
,”
Nat. Phys.
10
,
39
(
2014
).
13.
T.
Kariyado
and
Y.
Hatsugai
, “
Manipulation of Dirac cones in mechanical graphene
,”
Sci. Rep.
5
,
18107
(
2016
).
14.
A. B.
Khanikaev
,
R.
Fleury
,
S. H.
Mousavi
, and
A.
Alù
, “
Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice
,”
Nat. Commun.
6
,
8260
(
2015
).
15.
E.
Prodan
and
C.
Prodan
, “
Topological phonon modes and their role in dynamic instability of microtubules
,”
Phys. Rev. Lett.
103
,
248101
(
2009
).
16.
P.
Wang
,
L.
Lu
, and
K.
Bertoldi
, “
Topological phononic crystals with one-way elastic edge waves
,”
Phys. Rev. Lett.
115
,
104302
(
2015
).
17.
L. M.
Nash
,
D.
Kleckner
,
A.
Read
,
V.
Vitelli
,
A. M.
Turner
, and
W. T.
Irvine
, “
Topological mechanics of gyroscopic metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
14495
(
2015
).
18.
R.
Chaunsali
,
E.
Kim
,
A.
Thakkar
,
P. G.
Kevrekidis
, and
J.
Yang
, “
Demonstrating an in situ topological band transition in cylindrical granular chains
,”
Phys. Rev. Lett.
119
,
024301
(
2017
).
19.
R.
Fleury
,
A. B.
Khanikaev
, and
A.
Alu
, “
Floquet topological insulators for sound
,”
Nat. Commun.
7
,
11744
(
2016
).
20.
S. H.
Mousavi
,
A. B.
Khanikaev
, and
Z.
Wang
, “
Topologically protected elastic waves in phononic metamaterials
,”
Nat. Commun.
6
,
8682
(
2015
).
21.
S. D.
Huber
, “
Topological mechanics
,”
Nat. Phys.
12
,
621
(
2016
).
22.
E.
Prodan
,
K.
Dobiszewski
,
A.
Kanwal
,
J.
Palmieri
, and
C.
Prodan
, “
Dynamical majorana edge modes in a broad class of topological mechanical systems
,”
Nat. Commun.
8
,
14587
(
2017
).
23.
R.
Chaunsali
,
C.-W.
Chen
, and
J.
Yang
, “
Subwavelength and directional control of flexural waves in zone-folding induced topological plates
,”
Phys. Rev. B
97
,
054307
(
2018
).
24.
A.
Rycerz
,
J.
Tworzydo
, and
C.
Beenakker
, “
Valley filter and valley valve in graphene
,”
Nat. Phys.
3
,
172
(
2007
).
25.
F.
Zhang
,
J.
Jung
,
G. A.
Fiete
,
Q.
Niu
, and
A. H.
MacDonald
, “
Spontaneous quantum Hall states in chirally stacked few-layer graphene systems
,”
Phys. Rev. Lett.
106
,
156801
(
2011
).
26.
K. F.
Mak
,
K. L.
McGill
,
J.
Park
, and
P. L.
McEuen
, “
The valley Hall effect in MoS2 transistors
,”
Science
344
,
1489
(
2014
).
27.
J.-W.
Dong
,
X.-D.
Chen
,
H.
Zhu
,
Y.
Wang
, and
X.
Zhang
, “
Valley photonic crystals for control of spin and topology
,”
Nat. Mater.
16
,
298
(
2017
).
28.
J.
Lu
,
C.
Qiu
,
M.
Ke
, and
Z.
Liu
, “
Valley vortex states in sonic crystals
,”
Phys. Rev. Lett.
116
,
093901
(
2016
).
29.
J.
Lu
,
C.
Qiu
,
L.
Ye
,
X.
Fan
,
M.
Ke
,
F.
Zhang
, and
Z.
Liu
, “
Observation of topological valley transport of sound in sonic crystals
,”
Nat. Phys.
13
,
369
(
2017
).
30.
R. K.
Pal
and
M.
Ruzzene
, “
Edge waves in plates with resonators: An elastic analogue of the quantum valley Hall effect
,”
New J. Phys.
19
,
025001
(
2017
).
31.
J.
Vila
,
R. K.
Pal
, and
M.
Ruzzene
, “
Observation of topological valley modes in an elastic hexagonal lattice
,”
Phys. Rev. B
96
,
134307
(
2017
).
32.
A.
Darabi
and
M. J.
Leamy
, “
Reconfigurable topological insulator for elastic waves
,”
J. Acoust. Soc. Am.
146
,
773
(
2019
).
33.
A.
Darabi
,
M.
Collet
, and
M. J.
Leamy
, “
Experimental realization of a reconfigurable electroacoustic topological insulator
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
16138
(
2020
).
34.
H.
Benndorf
, “
Über einen plattenkondensator mit negativer kapazität
,”
Z. Phys.
82
,
397
(
1933
).
35.
D. M.
Spirit
,
A. D.
Ellis
, and
P. E.
Barnsley
, “
Optical time division multiplexing: Systems and networks
,”
IEEE Commun. Mag.
32
,
56
(
1994
).
36.
S.
Behrens
,
A.
Fleming
, and
S.
Moheimani
, “
A broadband controller for shunt piezoelectric damping of structural vibration
,”
Smart Mater. Struct.
12
,
18
(
2003
).
37.
B. S.
Beck
,
K. A.
Cunefare
, and
M.
Collet
, “
The power output and efficiency of a negative capacitance shunt for vibration control of a flexural system
,”
Smart Mater. Struct.
22
,
065009
(
2013
).
38.
N. W.
Hagood
and
A.
von Flotow
, “
Damping of structural vibrations with piezoelectric materials and passive electrical networks
,”
J. Sound Vib.
146
,
243
(
1991
).
39.
Y.
Hatsugai
, “
Chern number and edge states in the integer quantum Hall effect
,”
Phys. Rev. Lett.
71
,
3697
(
1993
).
You do not currently have access to this content.