(Bi1/2Na1/2)TiO3 (BNT) is a lead-free ferroelectric material, which has shown promising electromechanical properties and energy storage capacities. These attractive functionalities and property performances are attributed to the relaxor behavior of BNT. However, the nature of the dielectric relaxation is not well understood in these materials, and the physical meaning of some important parameters associated with the permittivity is still under debate. In this Letter, we focus on the dielectric “shoulder,” Ts, that is readily seen in the ε′–T curve of every BNT-based relaxor. It is found that the Ts is controlled by not only the typical compositional engineering but also by the thermal, electrical, or mechanical history. From a moderate temperature (≤250 °C), a sample can be rapidly cooled to room temperature or slowly cooled under an electrical bias or a mechanical bias in the form of a compressive stress. All three treatments lead to a nearly identical effect, which is to alter the Ts with respect to rest of the ε′–T curve that remains unperturbed. Therefore, the internal stress is identified to be a general perturbance to the polarization dynamics. Finally, the “breathing” model is revisited to interpret the physical meaning of Ts for these BNT materials under these metastable conditions.

1.
D.
Viehland
,
M.
Wuttig
, and
L. E.
Cross
,
Ferroelectrics
120
(
1
),
71
77
(
1991
).
2.
P. M.
Gehring
,
K.
Ohwada
, and
G.
Shirane
,
Phys. Rev. B
70
(
1
),
014110
(
2004
).
3.
E. V.
Colla
,
D.
Vigil
,
J.
Timmerwilke
,
M. B.
Weisman
,
D.
Viehland
, and
B.
Dkhil
,
Phys. Rev. B
75
(
21
),
214201
(
2007
).
4.
A.
Kumar
,
J. N.
Baker
,
P. C.
Bowes
,
M. J.
Cabral
,
S.
Zhang
,
E. C.
Dickey
,
D. L.
Irving
, and
J. M.
LeBeau
,
Nat. Mater.
20
(
1
),
62
67
(
2021
).
5.
W.
Cao
,
W.
Li
,
Y.
Feng
,
T.
Bai
,
Y.
Qiao
,
Y.
Hou
,
T.
Zhang
, and
W.
Fei
,
Appl. Phys. Lett.
108
(
20
),
202902
(
2016
).
6.
F.
Yan
,
X.
Zhou
,
H.
Bai
,
S.
Wu
,
B.
Shen
, and
J.
Zhai
,
Nano Energy
75
,
105012
(
2020
).
7.
G.
Viola
,
H.
Ning
,
X.
Wei
,
M.
Deluca
,
A.
Adomkevivius
,
J.
Khaliq
,
M. J.
Reece
, and
H.
Yan
,
J. Appl. Phys.
114
(
1
),
014107
(
2013
).
8.
E. V.
Colla
,
K.
Sullivan
, and
M. B.
Weissman
,
J. Appl. Phys.
119
(
1
),
014109
(
2016
).
9.
W.
Pan
,
E.
Furman
,
G. O.
Dayton
, and
L. E.
Cross
,
J. Mater. Sci. Lett.
5
(
6
),
647
649
(
1986
).
10.
D.
Schneider
,
J.
Rödel
,
D.
Rytz
, and
T.
Granzow
,
J. Am. Ceram. Soc.
98
(
12
),
3966
3974
(
2015
).
11.
W.
Jo
,
J.
Daniel
,
D.
Damjanovic
,
W.
Kleemann
, and
J.
Rödel
,
Appl. Phys. Lett.
102
(
19
),
192903
(
2013
).
12.
A. K.
Tagantsev
,
Phys. Rev. Lett.
72
(
7
),
1100
(
1994
).
13.
Z.
Fan
,
L.
Zhou
,
T. H.
Kim
,
J.
Zhang
,
S. T.
Zhang
, and
X.
Tan
,
Phys. Rev. Mater.
3
(
2
),
024402
(
2019
).
14.
Z. T.
Li
,
H.
Liu
,
H. C.
Thong
,
Z.
Xu
,
M. H.
Zhang
,
J.
Yin
,
J. F.
Li
,
K.
Wang
, and
J.
Chen
,
Adv. Electron. Mater.
5
(
3
),
1800756
(
2019
).
15.
Z.
Fan
and
C. A.
Randall
,
J. Mater. Chem. C
9
,
10303
10308
(
2021
).
16.
G.
Viola
,
Y.
Tan
,
R. A.
McKinnon
,
X.
Wei
,
H.
Yan
, and
M. J.
Reece
,
Appl. Phys. Lett.
105
(
10
),
102906
(
2014
).
17.
R.
Waser
,
J. Am. Ceram. Soc.
74
(
8
),
1934
1940
(
1991
).
18.
Z.
Fan
and
X.
Tan
,
Appl. Phys. Lett.
114
(
21
),
212901
(
2019
).
19.
L.
Luo
,
M.
Dietze
,
C.-H.
Solterbeck
,
H.
Luo
, and
M.
Es-Souni
,
J. Appl. Phys.
114
(
22
),
224112
(
2013
).
20.
T.
Granzow
,
T.
Woike
,
M.
Wöhlecke
,
M.
Imlau
, and
W.
Kleemann
,
Phys. Rev. Lett.
89
(
12
),
127601
(
2002
).
21.
J.
Zang
,
W.
Jo
, and
J.
Rödel
,
Appl. Phys. Lett.
102
(
3
),
032901
(
2013
).
22.
Y.
Ehara
,
N.
Novak
,
A.
Ayrikyan
,
P. T.
Geiger
, and
K. G.
Webber
,
J. Appl. Phys.
120
(
17
),
174103
(
2016
).
23.
A.
Martin
,
N. H.
Khansur
,
K.
Reiss
,
K. G.
Webber
, and
J.
Euro
,
Ceram. Soc.
39
(
4
),
1031
1041
(
2019
).
24.
F. H.
Schader
,
Z.
Wang
,
M.
Hinterstein
,
J. E.
Daniel
, and
K. G.
Webber
,
Phys. Rev. B
93
(
13
),
134111
(
2016
).
25.
M.
Zhang
,
P.
Breckner
,
T.
Frömling
,
J.
Rödel
, and
L. K.
Venkataraman
,
Appl. Phys. Lett.
116
(
26
),
262902
(
2020
).
26.
L. M.
Riemer
,
L. K.
Venkataraman
,
X.
Jiang
,
N.
Liu
,
C.
Dietz
,
R. W.
Stark
,
P. D.
Groszewicz
,
G.
Buntkowsky
,
J.
Chen
,
S.
Zhang
,
J.
Rödel
, and
J.
Koruza
,
Acta Mater.
136
,
271
280
(
2017
).
27.
V. M.
Ishchuk
,
I. G.
Gusakova
,
N. G.
Kisel
,
D. V.
Kuzenko
,
N. A.
Spiridonov
, and
V. L.
Sobolev
,
Mater. Res. Express
3
(
2
),
026301
(
2016
).
28.
W.
Jo
,
S.
Schaab
,
E.
Sapper
,
L. A.
Schmitt
,
H.-J.
Kleebe
,
A. J.
Bell
, and
J.
Rödel
,
J. Appl. Phys.
110
(
7
),
074106
(
2011
).
29.
L. E.
Cross
,
Ferroelectrics
76
(
1
),
241
267
(
1987
).
30.
A. E.
Glazounov
and
A. K.
Tagantsev
,
Ferroelectrics
221
(
1
),
57
66
(
1999
).
31.
H.
Takenaka
,
I.
Grinberg
,
S.
Liu
, and
A. M.
Rappe
,
Nature
546
(
7658
),
391
395
(
2017
).
You do not currently have access to this content.