An optical refractive index (RI) nanosensor with a high sensitivity and figure of merit (FOM), good stability, and biocompatibility is of great significance for biological detection and sensing in narrow spaces. However, the current optical RI nanosensors are mainly fabricated using metals, semiconductors, and quartz, which are not biocompatible and are even biotoxic, and often face a trade-off between a high sensitivity and a high FOM. Moreover, the sensors are mainly based on surface plasmon resonance, photonic crystals, fiber grating, etc., and, thus, most of them usually require a laser source with a specific optical wavelength or harsh excitation conditions, which are likely to cause photodamage and are unfavorable for biological applications. Hence, polylactic acid (PLA), a flexible dielectric material with good biocompatibility, is functioned by doping high refractive index quantum dots (QDs) and fabricated as a nanowire RI sensor. Doping the QDs into a PLA nanowire can improve the light confinement ability and then enhance Mie resonant scattering of the PLA nanowire, which is very beneficial to obtain a higher quality factor and then a higher-performance nanowire sensor. Under irradiation of a white light source, a high sensitivity with 833.78 nm/RIU (per refractive index unit) and the highest FOM of 9.64 RIU−1 are obtained. The good reliability and reproducibility of the sensors are further demonstrated. By choosing a proper diameter, the scattering peak of the nanosensor can be tuned into a biofriendly spectral range (600–900 nm), which predicts that the PLA nanowire RI sensors have a great potential in biological microenvironment monitoring, biosensing, and biomedical treatment.

1.
D.
Xu
,
X.
Xiong
,
L.
Wu
,
X. F.
Ren
,
C. E.
Png
,
G. C.
Guo
,
Q.
Gong
, and
Y. F.
Xiao
, “
Quantum plasmonics: New opportunity in fundamental and applied photonics
,”
Adv. Opt. Photonics
10
,
703
(
2018
).
2.
Y.
Xu
,
P.
Bai
,
X. D.
Zhou
,
Y.
Akimov
,
C. E.
Png
,
L. K.
Ang
,
W.
Knoll
, and
L.
Wu
, “
Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth
,”
Adv. Opt. Mater
7
,
1801433
(
2019
).
3.
Y.
Tian
,
W.
Wang
,
N.
Wu
,
X.
Zou
,
C.
Guthy
, and
X. A.
Wang
, “
Miniature fiber optic refractive index sensor built in a MEMS-based microchannel
,”
Sensors
11
,
1078
(
2011
).
4.
Z.
Li
,
Y.
Wang
,
C.
Liao
,
S.
Liu
,
J.
Zhou
,
X.
Zhong
,
Y.
Liu
,
K.
Yang
,
Q.
Wang
, and
G.
Yin
, “
Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer
,”
Sens. Actuators, B
199
,
31
(
2014
).
5.
J. Y.
Ahn
,
K. A.
Lee
, and
M. J.
Lee
, “
Surface plasmon resonance aptamer biosensor for discriminating pathogenic bacteria Vibrio parahaemolyticus
,”
J. Nanosci. Nanotechnol.
18
,
1599
(
2018
).
6.
A. J.
Haes
,
L.
Chang
, and
W. L.
Klein
, “
Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor
,”
J. Am. Chem. Soc.
12
,
2264
(
2005
).
7.
C.
Chen
and
J. S.
Wang
, “
Optical biosensors: An exhaustive and comprehensive review
,”
Analyst
145
,
1605
(
2020
).
8.
K.
Lodewijks
,
W. V.
Roy
,
G.
Borghs
,
L.
Lagae
, and
P. V.
Dorpe
, “
Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements
,”
Nano Lett.
12
(
3
),
1655
(
2012
).
9.
B.
Gerislioglu
,
L. L.
Dong
,
A.
Ahmadivand
,
H. T.
Hu
,
P.
Nordlander
, and
N. J.
Halas
, “
Monolithic metal dimer-on-film structure: New plasmonic properties introduced by the underlying metal
,”
Nano Lett.
20
,
2087
(
2020
).
10.
N. L.
Kazanskiy
,
S. N.
Khonina
, and
M. A.
Butt
, “
Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: A brief review
,”
Physica E
117
,
113798
(
2020
).
11.
X.
Xu
,
H.
Subbaraman
,
S.
Chakravarty
,
A.
Hosseini
,
J.
Covey
,
Y.
Yu
,
D.
Kwong
,
Y.
Zhang
,
W. C.
Lai
,
Y.
Zou
,
N.
Lu
, and
R. T.
Chen
, “
Flexible single-crystal silicon nanomembrane photonic crystal cavity
,”
ACS Nano
8
,
12265
(
2014
).
12.
A. E.
Cetina
and
S. N.
Topkayab
, “
Photonic crystal and plasmonic nanohole based label-free biodetection
,”
Biosens. Bioelectron.
132
,
196
(
2019
).
13.
J.
Wang
,
P. W. H.
Pinkse
,
L. I.
Segerink
, and
J. C. T.
Eijkel
, “
Bottom-up assembled photonic crystals for structure-enabled label-free sensing
,”
ACS Nano
15
,
9299
(
2021
).
14.
T.
Guo
, “
Fiber grating assisted surface plasmon resonance for biochemical and electrochemical sensing
,”
J. Lightwave Technol.
35
,
3323
(
2017
).
15.
T.
Liu
,
L. L.
Liang
,
P.
Xiao
,
L. P.
Sun
,
Y. Y.
Huang
,
Y.
Ran
,
L.
Jin
, and
B. O.
Guan
, “
A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating
,”
Biosens. Bioelectron.
100
,
155
(
2018
).
16.
B.
Jiang
,
K.
Zhou
,
C.
Wang
,
Q.
Sun
,
G.
Yin
,
Z.
Tai
,
K.
Wilson
,
J.
Zhao
, and
L.
Zhang
, “
Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating
,”
Sens. Actuators, B
254
,
1033
(
2018
).
17.
C.
Li
,
J. J.
Gao
,
M.
Shafi
,
R. C.
Liu
,
Z. P.
Zha
,
D. J.
Feng
,
M.
Liu
,
X. J.
Du
,
W. W.
Yue
, and
S. Z.
Jiang
, “
Optical fiber SPR biosensor complying with a 3D composite hyperbolic metamaterial and a graphene film
,”
Photonics Res.
9
,
379
(
2021
).
18.
I.
Watad
and
I.
Abdulhalim
, “
Spectropolarimetric surface plasmon resonance sensor and the selection of the best polarimetric function
,”
IEEE J. Sel. Top. Quantum Electron.
23
,
89
97
(
2016
).
19.
H.
Li
and
X.
Fan
, “
Characterization of sensing capability of optofluidic ring resonator biosensors
,”
Appl. Phys. Lett.
97
,
011105
(
2010
).
20.
X.
Yan
,
R.
Fu
,
T. L.
Cheng
, and
S. G.
Li
, “
A highly sensitive refractive index sensor based on a V-shaped photonic crystal fiber with a high refractive index range
,”
Sensors
21
,
3782
(
2021
).
21.
Y. L.
Wang
,
B. W.
Gao
,
K.
Zhang
,
K.
Yuan
,
Y.
Wan
,
Z.
Xie
,
X. L.
Xu
,
H.
Zhang
,
Q. J.
Song
,
L.
Yao
,
X.
Fang
,
Y. P.
Li
,
W. J.
Xu
,
J. S.
Zhang
, and
L.
Dai
, “
Refractive index sensor based on leaky resonant scattering of single semiconductor nanowire
,”
ACS Photonics
4
(
3
),
688
(
2017
).
22.
J.
Zhou
,
A.
Panday
,
Y. T.
Xu
,
X.
Chen
,
L.
Chen
,
C. G.
Ji
, and
L. J.
Guo
, “
Visualizing Mie resonances in low-index dielectric nanoparticles
,”
Phys. Rev. Lett.
120
(
25
),
253902
(
2018
).
23.
M. S.
Singhvi
,
S. S.
Zinjarde
, and
D. V.
Gokhale
, “
Polylactic acid: Synthesis and biomedical applications
,”
J. Appl. Microbiol.
127
,
1612
(
2019
).
24.
G.
Narayanan
,
V. N.
Vernekar
,
E. L.
Kuyinu
, and
C. T.
Laurencin
, “
Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering
,”
Adv. Drug Delivery Rev.
107
,
247
(
2016
).
25.
T.
Xu
,
H.
Yang
,
D.
Yang
, and
Z. Z.
Yu
, “
Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering
,”
ACS Appl. Mater. Interfaces
9
,
21094
(
2017
).
26.
S.
Zhang
,
B.
Ma
,
F.
Liu
,
J.
Duan
,
S.
Wang
,
J.
Qiu
,
D.
Li
,
Y.
Sang
,
C.
Liu
,
D.
Liu
, and
H.
Liu
, “
Polylactic acid nanopillar array-driven osteogenic differentiation of human adipose-derived stem cells determined by pillar diameter
,”
Nano Lett.
18
,
2243
(
2018
).
27.
G.
Brönstrup
,
N.
Jahr
,
C.
Leiterer
,
A.
Csáki
,
W.
Fritzsche
, and
S.
Christiansen
, “
Optical properties of individual silicon nanowires for photonic devices
,”
ACS Nano
4
,
7113
(
2010
).
28.
J.
Becker
,
Plasmons as Sensors
(
Springer Science & Business Media
,
2012
), Vol.
100
.
29.
J.
Homola
, “
Surface plasmon resonance sensors for detection of chemical and biological species
,”
Chem. Rev.
108
,
462
(
2008
).
30.
K. M.
Mayer
and
J. H.
Hafner
, “
Localized surface plasmon resonance sensors
,”
Chem. Rev.
111
,
3828
(
2011
).
31.
W. N.
Zhang
,
P.
Liu
,
G. W.
Yang
, and
H. X.
Lei
, “
Single polylactic acid nanowire for highly sensitive and multifunctional optical biosensing
,”
ACS Appl. Mater. Interfaces
13
,
27983
(
2021
).
32.
S. P.
Lyu
and
D.
Untereker
, “
Degradability of polymers for implantable biomedical devices
,”
Int. J. Mol. Sci.
10
,
4033
(
2009
).
33.
Y. L.
Sun
,
S. M.
Sun
,
P.
Wang
,
W. F.
Dong
,
L.
Zhang
,
B. B.
Xu
,
Q. D.
Chen
,
L. M.
Tong
, and
H. B.
Sun
, “
Customization of protein single nanowires for optical biosensing
,”
Small
11
,
2869
(
2015
).

Supplementary Material

You do not currently have access to this content.