Low-dimensional hybrid organic–inorganic metal halide perovskites are rapidly emerging as a fascinating sub-class of the three-dimensional parent structures, thanks to their appealing charge and thermal transport properties, paired to better chemical and thermal stabilities. Extensive investigations of the thermal behavior in these systems are of paramount relevance to understand their optoelectronic and thermoelectric applications. Herein, we present a complete thermophysical characterization of imidazolium lead iodide, (IMI)PbI3, a 1D pseudo-perovskite with chains of face-sharing octahedra, and histammonium lead iodide, (HIST)PbI4, a 2D layered perovskite with corner-sharing octahedra. Upon heating, the two compounds show highly anisotropic thermal expansion effects and high thermal stability until 250–300 °C. The thermal diffusivity of pelletized powders was measured with the laser flash technique from room temperature up to 225 °C. To account for the reduced density of the pelletized powders with respect to the bulk, the diffusivity data in different atmospheres were modeled as a function of the volume fraction and dimensionality of the pores, allowing to extrapolate the thermal conductivity of the bulk materials. The two compounds exhibit an ultralow thermal conductivity of 0.15 W/m K, two to three times lower than that reported on 3D MAPbI3 using the same technique. This finding suggests the primary role of the organic molecules within the hybrid systems, regardless of the octahedra connectivity and dimensionality.

1.
M. A. J.
Rasel
,
A.
Giri
,
D. H.
Olson
,
C.
Ni
,
P. E.
Hopkins
, and
J. P.
Feser
, “
Chain-length dependence of thermal conductivity in 2D alkylammonium lead iodide single crystals
,”
ACS Appl. Mater. Interfaces
12
,
53705
53711
(
2020
).
2.
N.
Hoshino
,
S.
Tamura
, and
T.
Akutagawa
, “
Negative-to-positive thermal conductivity temperature coefficient transition induced by dynamic fluctuations of the alkyl chains in the layered complex (C4H9NH3)2CuCl4
,”
Chem. Eur. J.
26
,
2610
2618
(
2020
).
3.
C.
Li
,
H.
Ma
,
T.
Li
,
J.
Dai
,
M. A. J.
Rasel
,
A.
Mattoni
,
A.
Alatas
,
M. G.
Thomas
,
Z. W.
Rouse
,
A.
Shragai
,
S. P.
Baker
,
B. J.
Ramshaw
,
J. P.
Feser
,
D. B.
Mitzi
, and
Z.
Tian
, “
Remarkably weak anisotropy in thermal conductivity of two-dimensional hybrid perovskite butylammonium lead iodide crystals
,”
Nano Lett.
21
,
3708
3714
(
2021
).
4.
A. D.
Christodoulides
,
P.
Guo
,
L.
Dai
,
J. M.
Hoffman
,
X.
Li
,
X.
Zuo
,
D.
Rosenmann
,
A.
Brumberg
,
M. G.
Kanatzidis
,
R. D.
Schaller
, and
J. A.
Malen
, “
Signatures of coherent phonon transport in ultralow thermal conductivity two-dimensional Ruddlesden–Popper phase perovskites
,”
ACS Nano
15
,
4165
4172
(
2021
).
5.
X.
Long
,
Z.
Pan
,
Z.
Zhang
,
J. J.
Urban
, and
H.
Wang
, “
Solvent-free synthesis of organometallic halides CH3NH3PbI3 and (CH3NH3)3Bi2I9 and their thermoelectric transport properties
,”
Appl. Phys. Lett.
115
,
072104
(
2019
).
6.
N.
Mercier
, “
Hybrid halide perovskites: Discussions on terminology and materials
,”
Angew. Chem. Int. Ed.
58
,
17912
17917
(
2019
).
7.
M.
Parashar
,
R.
Singh
,
K.
Yoo
, and
J.-J.
Lee
, “
Formation of 1-D/3-D fused perovskite for efficient and moisture stable solar cells
,”
ACS Appl. Energy Mater.
4
,
2751
2760
(
2021
).
8.
M. M.
Elsenety
,
M.
Antoniadou
,
N.
Balis
,
A.
Kaltzoglou
,
L.
Sygellou
,
A.
Stergiou
,
N.
Tagmatarchis
, and
P.
Falaras
, “
Stability Improvement and performance reproducibility enhancement of perovskite solar cells following (FA/MA/Cs)PbI3–xBrx/(CH3)3SPbI3 dimensionality engineering
,”
ACS Appl. Energy Mater.
3
,
2465
2477
(
2020
).
9.
E.-B.
Kim
,
M. S.
Akhtar
,
H.-S.
Shin
,
S.
Ameen
, and
M. K.
Nazeeruddin
, “
A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances
,”
J. Photochem. Photobiol. C
48
,
100405
(
2021
).
10.
G.
Divitini
,
S.
Cacovich
,
F.
Matteocci
,
L.
Cinà
,
A.
Di Carlo
, and
C.
Ducati
, “
In situ observation of heat-induced degradation of perovskite solar cells
,”
Nat. Energy
1
,
15012
(
2016
).
11.
A.
Pisoni
,
J.
Jaćimović
,
O. S.
Barišić
,
M.
Spina
,
R.
Gaál
,
L.
Forró
, and
E.
Horváth
, “
Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3
,”
J. Phys. Chem. Lett.
5
,
2488
2492
(
2014
).
12.
Y.
Zhang
,
G.
Grancini
,
Z.
Fei
,
E.
Shirzadi
,
X.
Liu
,
E.
Oveisi
,
F. F.
Tirani
,
R.
Scopelliti
,
Y.
Feng
,
M. K.
Nazeeruddin
, and
P. J.
Dyson
, “
Auto-passivation of crystal defects in hybrid imidazolium/methylammonium lead iodide films by fumigation with methylamine affords high efficiency perovskite solar cells
,”
Nano Energy
58
,
105
111
(
2019
).
13.
L.
Mao
,
H.
Tsai
,
W.
Nie
,
L.
Ma
,
J.
Im
,
C. C.
Stoumpos
,
C. D.
Malliakas
,
F.
Hao
,
M. R.
Wasielewski
,
A. D.
Mohite
, and
M. G.
Kanatzidis
, “
Role of organic counterion in lead- and tin-based two-dimensional semiconducting iodide perovskites and application in planar solar cells
,”
Chem. Mater.
28
,
7781
7792
(
2016
).
14.
O. J.
Weber
,
K. L.
Marshall
,
L. M.
Dyson
, and
M. T.
Weller
, “
Structural diversity in hybrid organic–inorganic lead iodide materials
,”
Acta Cryst. B
71
,
668
678
(
2015
).
15.
C.
Pipitone
,
F.
Giannici
,
A.
Martorana
,
F.
Bertolotti
,
G.
Calabrese
,
S.
Milita
,
A.
Guagliardi
, and
N.
Masciocchi
, “
Proton sponge lead halides containing 1D polyoctahedral chains
,”
CrystEngComm
23
,
1126
1139
(
2021
).
16.
Y.
Sunairi
,
S.
Dekura
,
A.
Ueda
,
T.
Ida
,
M.
Mizuno
, and
H.
Mori
, “
Anhydrous purely organic solid-state proton conductors: Effects of molecular dynamics on the proton conductivity of imidazolium hydrogen dicarboxylates
,”
J. Phys. Soc. Jpn.
89
,
051008
(
2020
).
17.
M. A.
Haque
,
S.
Kee
,
D. R.
Villalva
,
W.
Ong
, and
D.
Baran
, “
Halide perovskites: Thermal transport and prospects for thermoelectricity
,”
Adv. Sci.
7
,
1903389
(
2020
).
18.
F.
Cernuschi
,
S.
Ahmaniemi
,
P.
Vuoristo
, and
T.
Mäntylä
, “
Modelling of thermal conductivity of porous materials: Application to thick thermal barrier coatings
,”
J. Eur. Ceram. Soc.
24
,
2657
2667
(
2004
).
19.
A.
Bjorneklett
,
L.
Haukeland
,
J.
Wigren
, and
H.
Kristiansen
, “
Effective medium theory and the thermal conductivity of plasma-sprayed ceramic coatings
,”
J. Mater. Sci.
29
,
4043
4050
(
1994
).
20.
P. N.
Sen
,
C.
Scala
, and
M. H.
Cohen
, “
A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads
,”
Geophysics
46
,
781
795
(
1981
).
21.
F.
Cernuschi
,
P.
Bison
, and
A.
Moscatelli
, “
Microstructural characterization of porous thermal barrier coatings by laser flash technique
,”
Acta Mater.
57
,
3460
3471
(
2009
).
22.
A.
Giri
,
A. Z.
Chen
,
A.
Mattoni
,
K.
Aryana
,
D.
Zhang
,
X.
Hu
,
S.-H.
Lee
,
J. J.
Choi
, and
P. E.
Hopkins
, “
Ultralow thermal conductivity of two-dimensional metal halide perovskites
,”
Nano Lett.
20
,
3331
3337
(
2020
).
23.
T.
Haeger
,
R.
Heiderhoff
, and
T.
Riedl
, “
Thermal properties of metal-halide perovskites
,”
J. Mater. Chem. C
8
,
14289
14311
(
2020
).
24.
A. C.
Ferreira
,
A.
Létoublon
,
S.
Paofai
,
S.
Raymond
,
C.
Ecolivet
,
B.
Rufflé
,
S.
Cordier
,
C.
Katan
,
M. I.
Saidaminov
,
A. A.
Zhumekenov
,
O. M.
Bakr
,
J.
Even
, and
P.
Bourges
, “
Elastic softness of hybrid lead halide perovskites
,”
Phys. Rev. Lett.
121
,
085502
(
2018
).
25.
A.
Mattoni
,
A.
Filippetti
,
M. I.
Saba
, and
P.
Delugas
, “
Methylammonium rotational dynamics in lead halide perovskite by classical molecular dynamics: The role of temperature
,”
J. Phys. Chem. C
119
,
17421
17428
(
2015
).
26.
L.
Lindsay
,
C.
Hua
,
X. L.
Ruan
, and
S.
Lee
, “
Survey of ab initio phonon thermal transport
,”
Mater. Today Phys.
7
,
106
120
(
2018
).
27.
X.
Qian
,
X.
Gu
, and
R.
Yang
, “
Thermal conductivity modeling of hybrid organic-inorganic crystals and superlattices
,”
Nano Energy
41
,
394
407
(
2017
).
28.
Y.
Wang
,
R.
Lin
,
P.
Zhu
,
Q.
Zheng
,
Q.
Wang
,
D.
Li
, and
J.
Zhu
, “
Cation dynamics governed thermal properties of lead halide perovskite nanowires
,”
Nano Lett.
18
,
2772
2779
(
2018
).
29.
N. P.
Gallop
,
O.
Selig
,
G.
Giubertoni
,
H. J.
Bakker
,
Y. L. A.
Rezus
,
J. M.
Frost
,
T. L. C.
Janesn
,
R.
Lovrincic
, and
A. A.
Bakulin
, “
Rotational cation dynamics in metal halide perovskites: Effect on phonons and material properties
,”
J. Phys. Chem. Lett.
9
,
5987
5997
(
2018
).
30.
G. P.
Moriarty
,
K.
Briggs
,
B.
Stevens
,
C.
Yu
, and
J. C.
Grunlan
, “
Fully organic nanocomposites with high thermoelectric power factors by using a dual-stabilizer preparation
,”
Energy Technol.
1
,
265
272
(
2013
).
31.
G.
Prunet
,
F.
Pawula
,
G.
Fleury
,
E.
Cloutet
,
A. J.
Robinson
,
G.
Hadziioannou
, and
A.
Pakdel
, “
A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications
,”
Mater. Today Phys.
18
,
100402
(
2021
).

Supplementary Material

You do not currently have access to this content.