Surface defect passivation through additional molecular bonding plays a crucial role in optimization of perovskite-based photovoltaic devices. So far, quantization of the defect site coverage by molecular passivation remains unclear from a macroscopic view. We herein unravel the coverage possibility of the surface defect sites of perovskite films by the added molecule passivators upon an MAPbI3 perovskite system. Concerns of inconsistent time-resolved photoluminescence (TRPL) spectroscopic measurements are dispelled by vapor-deposition fabrications of highly uniform perovskite films. The surface defect densities of perovskite films are derived from global fittings of the charge carrier dynamics to the measured TRPL decays. It is revealed the Langmuir adsorption relationship of the defect site coverage with respect to the added amount of tri-n-octylphosphine oxide passivation molecules. Our work supplements the dynamical bonding model of the molecular passivation process and provides reliable knowledge upon the bonding process between molecules and defects, which leads to rationalized surface passivation methodologies in perovskite photovoltaics communities.

1.
Q.
Jiang
,
Y.
Zhao
,
X.
Zhang
,
X.
Yang
,
Y.
Chen
,
Z.
Chu
,
Q.
Ye
,
X.
Li
,
Z.
Yin
, and
J.
You
, “
Surface passivation of perovskite film for efficient solar cells
,”
Nat. Photonics
13
,
460
466
(
2019
).
2.
R.
Wang
,
J.
Xue
,
K.-L.
Wang
,
Z.-K.
Wang
,
Y.
Luo
,
D.
Fenning
,
G.
Xu
,
S.
Nuryyeva
,
T.
Huang
,
Y.
Zhao
,
J. L.
Yang
,
J.
Zhu
,
M.
Wang
,
S.
Tan
,
I.
Yavuz
,
K. N.
Houk
, and
Y.
Yang
, “
Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics
,”
Science
366
,
1509
1513
(
2019
).
3.
X.
Zheng
,
Y.
Hou
,
C.
Bao
,
J.
Yin
,
F.
Yuan
,
Z.
Huang
,
K.
Song
,
J.
Liu
,
J.
Troughton
,
N.
Gasparini
,
C.
Zhou
,
Y.
Lin
,
D.-J.
Xue
,
B.
Chen
,
A. K.
Johnston
,
N.
Wei
,
M. N.
Hedhili
,
M.
Wei
,
A. Y.
Alsalloum
,
P.
Maity
,
B.
Turedi
,
C.
Yang
,
D.
Baran
,
T. D.
Anthopoulos
,
Y.
Han
,
Z.-H.
Lu
,
O. F.
Mohammed
,
F.
Gao
,
E. H.
Sargent
, and
O. M.
Bakr
, “
Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells
,”
Nat. Energy
5
,
131
140
(
2020
).
4.
E. H.
Jung
,
N. J.
Jeon
,
E. Y.
Park
,
C. S.
Moon
,
T. J.
Shin
,
T.-Y.
Yang
,
J. H.
Noh
, and
J.
Seo
, “
Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)
,”
Nature
567
,
511
515
(
2019
).
5.
J.
Zhuang
,
P.
Mao
,
Y.
Luan
,
X.
Yi
,
Z.
Tu
,
Y.
Zhang
,
Y.
Yi
,
Y.
Wei
,
N.
Chen
,
T.
Lin
,
F.
Wang
,
C.
Li
, and
J.
Wang
, “
Interfacial passivation for perovskite solar cells: The effects of the functional group in phenethylammonium iodide
,”
ACS Energy Lett.
4
,
2913
2921
(
2019
).
6.
J.
Peng
,
J. I.
Khan
,
W.
Liu
,
E.
Ugur
,
T.
Duong
,
Y.
Wu
,
H.
Shen
,
K.
Wang
,
H.
Dang
,
E.
Aydin
,
X.
Yang
,
Y.
Wan
,
K. J.
Weber
,
K. R.
Catchpole
,
F.
Laquai
,
S.
De Wolf
, and
T. P.
White
, “
A universal double-side passivation for high open-circuit voltage in perovskite solar cells: Role of carbonyl groups in poly(methyl methacrylate)
,”
Adv. Energy Mater.
8
,
1801208
(
2018
).
7.
D. W.
DeQuilettes
,
S.
Koch
,
S.
Burke
,
R. K.
Paranji
,
A. J.
Shropshire
,
M. E.
Ziffer
, and
D. S.
Ginger
, “
Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation
,”
ACS Energy Lett.
1
,
438
444
(
2016
).
8.
J.-W.
Lee
,
S.-H.
Bae
,
Y.-T.
Hsieh
,
N.
De Marco
,
M.
Wang
,
P.
Sun
, and
Y.
Yang
, “
A bifunctional Lewis base additive for microscopic homogeneity in perovskite solar cells
,”
Chem
3
,
290
302
(
2017
).
9.
J.
Xu
,
A.
Buin
,
A. H.
Ip
,
W.
Li
,
O.
Voznyy
,
R.
Comin
,
M.
Yuan
,
S.
Jeon
,
Z.
Ning
,
J. J.
McDowell
,
P.
Kanjanaboos
,
J.-P.
Sun
,
X.
Lan
,
L. N.
Quan
,
D. H.
Kim
,
I. G.
Hill
,
P.
Maksymovych
, and
E. H.
Sargent
, “
Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes
,”
Nat. Commun.
6
,
7081
(
2015
).
10.
A.
Abate
,
M.
Saliba
,
D. J.
Hollman
,
S. D.
Stranks
,
K.
Wojciechowski
,
R.
Avolio
,
G.
Grancini
,
A.
Petrozza
, and
H. J.
Snaith
, “
Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells
,”
Nano Lett.
14
,
3247
3254
(
2014
).
11.
M.
Stolterfoht
,
C. M.
Wolff
,
J. A.
Marquez
,
S.
Zhang
,
C. J.
Hages
,
D.
Rothhardt
,
S.
Albrecht
,
P. L.
Burn
,
P.
Meredith
,
T.
Unold
, and
D.
Neher
, “
Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells
,”
Nat. Energy
3
,
847
854
(
2018
).
12.
I. L.
Braly
,
D. W.
deQilettes
,
L. M.
Pazos-Outon
,
S.
Burke
,
M. E.
Ziffer
,
D. S.
Ginger
, and
H. W.
Hillhouse
, “
Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency
,”
Nat. Photonics
12
,
355
361
(
2018
).
13.
T.
Leijtens
,
G. E.
Eperon
,
A. J.
Barker
,
G.
Grancini
,
W.
Zhang
,
J. M.
Ball
,
A. R. S.
Kandada
,
H. J.
Snaith
, and
A.
Petrozza
, “
Carrier trapping and recombination: The role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells
,”
Energy Environ. Sci.
9
,
3472
3481
(
2016
).
14.
H.
Min
,
M.
Kim
,
S.-U.
Lee
,
H.
Kim
,
G.
Kim
,
K.
Choi
,
J. H.
Lee
, and
S. I.
Seok
, “
Efficient, stable solar cells by using inherent bandgap of alpha-phase formamidinium lead iodide
,”
Science
366
,
749
753
(
2019
).
15.
M.
Stolterfoht
,
C. M.
Wolff
,
Y.
Amir
,
A.
Paulke
,
L.
Perdigon-Toro
,
P.
Caprioglio
, and
D.
Neher
, “
Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells
,”
Energy Environ. Sci.
10
,
1530
1539
(
2017
).
16.
F.
Tan
,
H.
Tan
,
M. I.
Saidaminov
,
M.
Wei
,
M.
Liu
,
A.
Mei
,
P.
Li
,
B.
Zhang
,
C.-S.
Tan
,
X.
Gong
,
Y.
Zhao
,
A. R.
Kirmani
,
Z.
Huang
,
J. Z.
Fan
,
R.
Quintero-Bermudez
,
J.
Kim
,
Y.
Zhao
,
O.
Voznyy
,
Y.
Gao
,
F.
Zhang
,
L. J.
Richter
,
Z.-H.
Lu
,
W.
Zhang
, and
E. H.
Sargent
, “
In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells
,”
Adv. Mater.
31
,
1807435
(
2019
).
17.
W.-Q.
Wu
,
J.-X.
Zhong
,
J.-F.
Liao
,
C.
Zhang
,
Y.
Zhou
,
W.
Feng
,
L.
Ding
,
L.
Wang
, and
D.-B.
Kuang
, “
Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells
,”
Nano Energy
75
,
104929
(
2020
).
18.
M.
Jeong
,
I. W.
Choi
,
E. M.
Go
,
Y.
Cho
,
M.
Kim
,
B.
Lee
,
S.
Jeong
,
Y.
Jo
,
H. W.
Choi
,
J.
Lee
,
J.-H.
Bae
,
S. K.
Kwak
,
D. S.
Kim
, and
C.
Yang
, “
Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3 V voltage loss
,”
Science
369
,
1615
1620
(
2020
).
19.
X.
Zheng
,
B.
Chen
,
J.
Dai
,
Y.
Fang
,
Y.
Bai
,
Y.
Lin
,
H.
Wei
,
X. C.
Zeng
, and
J.
Huang
, “
Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations
,”
Nat. Energy
2
,
17102
(
2017
).
20.
P.
Zeng
,
G.
Feng
,
X.
Cui
, and
M.
Liu
, “
Revealing the role of interfaces in photocarrier dynamics of perovskite films by alternating front/back side excitation time-resolved photoluminescence
,”
J. Phys. Chem. C
124
,
6290
6296
(
2020
).
21.
J.
Wang
,
W.
Fu
,
S.
Jariwala
,
I.
Sinha
,
A. K.-Y.
Jen
, and
D. S.
Ginger
, “
Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics
,”
ACS Energy Lett.
4
,
222
227
(
2019
).
22.
K. P.
Goetz
,
A. D.
Taylor
,
F.
Paulus
, and
Y.
Vaynzof
, “
Shining light on the photoluminescence properties of metal halide perovskites
,”
Adv. Funct. Mater.
30
,
1910004
(
2020
).
23.
D. W.
deQuilettes
,
S.
Jariwala
,
S.
Burke
,
M. E.
Ziffer
,
J. T.-W.
Wang
,
H. J.
Snaith
, and
D. S.
Ginger
, “
Tracking photoexcited carriers in hybrid perovskite semiconductors: Trap-dominated spatial heterogeneity and diffusion
,”
ACS Nano
11
,
11488
11496
(
2017
).
24.
G.
Huang
,
C.
Wang
,
H.
Zhang
,
S.
Xu
,
Q.
Xu
, and
Y.
Cui
, “
Post-healing of defects: An alternative way for passivation of carbon-based mesoscopic perovskite solar cells via hydrophobic ligand coordination
,”
J. Mater. Chem. A
6
,
2449
2455
(
2018
).
25.
W.
Li
,
X.
Lai
,
F.
Meng
,
G.
Li
,
K.
Wang
,
A. K. K.
Kyaw
, and
X. W.
Sun
, “
Efficient defect-passivation and charge-transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells
,”
Sol. Energy Mater. Sol. Cells
211
,
110527
(
2020
).
26.
A. F.
Akbulatov
,
L. A.
Frolova
,
S. A.
Tsarev
,
I.
Zhidkov
,
S. Y.
Luchkin
,
E. Z.
Kurmaev
,
K. J.
Stevenson
,
S. M.
Aldoshin
, and
P. A.
Troshin
, “
Film deposition techniques impact the defect density and photostability of MAPbI3 perovskite films
,”
J. Phys. Chem. C
124
,
21378
21385
(
2020
).
27.
E. M.
Hutter
,
G. E.
Eperon
,
S. D.
Stranks
, and
T. J.
Savenije
, “
Charge carriers in planar and meso-structured organic–inorganic perovskites: Mobilities, lifetimes, and concentrations of trap states
,”
J. Phys. Chem. Lett.
6
,
3082
3090
(
2015
).
28.
M. B.
Johnston
and
L. M.
Herz
, “
Hybrid perovskites for photovoltaics: Charge-carrier recombination, diffusion, and radiative efficiencies
,”
Acc. Chem. Res.
49
,
146
154
(
2016
).
29.
D. W.
deQuilettes
,
K.
Frohna
,
D.
Emin
,
T.
Kirchartz
,
V.
Bulovic
,
D. S.
Ginger
, and
S. D.
Stranks
, “
Charge-carrier recombination in halide perovskites
,”
Chem. Rev.
119
,
11007
11019
(
2019
).
30.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J. P.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
, “
Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
,”
Science
342
,
341
344
(
2013
).
31.
G.
Xing
,
N.
Mathews
,
S.
Sun
,
S. S.
Lim
,
Y. M.
Lam
,
M.
Grätzel
,
S.
Mhaisalkar
, and
T. C.
Sum
, “
Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3
,”
Science
342
,
344
347
(
2013
).
32.
L. M.
Herz
, “
Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits
,”
ACS Energy Lett.
2
,
1539
1548
(
2017
).
33.
Y.
Yang
,
M.
Yang
,
D. T.
Moore
,
Y.
Yan
,
E. M.
Miller
,
K.
Zhu
, and
M. C.
Beard
, “
Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films
,”
Nat. Energy
2
,
16207
(
2017
).
34.
V. S.
Chirvony
,
K. S.
Sekerbayev
,
D.
Pérez-del Rey
,
J. P.
Martínez-Pastor
,
F.
Palazon
,
P. P.
Boix
,
T. I.
Taurbayev
,
M.
Sessolo
, and
H. J.
Bolink
, “
Short photoluminescence lifetimes in vacuum-deposited CH3NH3PbI3 perovskite thin films as a result of fast diffusion of photogenerated charge carriers
,”
J. Phys. Chem. Lett.
10
,
5167
5172
(
2019
).
35.
A. A. B.
Baloch
,
F. H.
Alharbi
,
G.
Grancini
,
M. I.
Hossain
,
M. K.
Nazeeruddin
, and
N.
Tabet
, “
Analysis of photocarrier dynamics at interfaces in perovskite solar cells by time-resolved photoluminescence
,”
J. Phys. Chem. C
122
,
26805
26815
(
2018
).
36.
Z.
Guo
,
N.
Zhou
,
O. F.
Williams
,
J.
Hu
,
W.
You
, and
A. M.
Moran
, “
Imaging carrier diffusion in perovskites with a diffractive optic-based transient absorption microscope
,”
J. Phys. Chem. C
122
,
10650
10656
(
2018
).
37.
I.
Langmuir
, “
The adsorption of gases on plane surfaces of glass, mica and platinum
,”
J. Am. Chem. Soc.
40
,
1361
1403
(
1918
).
38.
H.
Swenson
and
N. P.
Stadie
, “
Langmuir's theory of adsorption: A centennial review
,”
Langmuir
35
,
5409
5426
(
2019
).
39.
K.
Foo
and
B.
Hameed
, “
Insights into the modeling of adsorption isotherm systems
,”
Chem. Eng. J.
156
,
2
10
(
2010
).
40.
J. Y.
Na
,
B.
Kang
,
D. H.
Sin
,
K.
Cho
, and
Y. D.
Park
, “
Understanding solidification of polythiophene thin films during spin-coating: Effects of spin-coating time and processing additives
,”
Sci. Rep.
5
,
13288
(
2015
).
41.
D.
Schubert
and
T.
Dunkel
, “
Spin coating from a molecular point of view: Its concentration regimes, influence of molar mass and distribution
,”
Mater. Res. Innovations
7
,
314
321
(
2003
).
42.
X.
Wen
,
Y.
Feng
,
S.
Huang
,
F.
Huang
,
Y.-B.
Cheng
,
M.
Green
, and
A.
Ho-Baillie
, “
Defect trapping states and charge carrier recombination in organic-inorganic halide perovskites
,”
J. Mater. Chem. C
4
,
793
800
(
2016
).
43.
D.
Yang
,
X.
Zhou
,
R.
Yang
,
Z.
Yang
,
W.
Yu
,
X.
Wang
,
C.
Li
,
S. F.
Liu
, and
R. P. H.
Chang
, “
Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells
,”
Energy Environ. Sci.
9
,
3071
3078
(
2016
).

Supplementary Material

You do not currently have access to this content.