Doping, here understood as purposefully introducing charge carriers, is a standard procedure, which is regularly employed with semiconductors to enhance conductivity and, hence, improve efficiency. Organic semiconductors are no different here, only the ratio of a dopant to a host is dramatically different compared to their inorganic counterparts. Therefore, doping of organic semiconductors will often affect the morphology and the conductivity of the host material. As the charge carriers created upon doping are usually paramagnetic, electron paramagnetic resonance (EPR) spectroscopy is perfectly suited to investigate the doping process, providing unique insights due to its exclusive sensitivity to paramagnetic states and high resolution on a molecular scale. To make an impact, EPR spectroscopy needs to be applied routinely to a large series of different systems, and the data obtained need to be analyzed in a reliable and robust way. This strongly advocates for using conventional X-band cw-EPR spectroscopy at room temperature wherever possible. Questions that can be addressed by EPR spectroscopy are discussed, and this Perspective presents how the method can gain greater importance for addressing the urgent research questions in the field, mainly by automating both data acquisition and analysis and developing robust and reliable analysis tools.

1.
B.
Minaev
,
G.
Baryshnikov
, and
H.
Agren
,
Phys. Chem. Chem. Phys.
16
,
1719
(
2014
).
2.
L.
Torsi
,
M.
Magliulo
,
K.
Manoli
, and
G.
Palazzo
,
Chem. Soc. Rev.
42
,
8612
(
2013
).
3.
K.-J.
Baeg
,
M.
Binda
,
D.
Natali
,
M.
Caironi
, and
Y.-Y.
Noh
,
Adv. Mater.
25
,
4267
(
2013
).
4.
K. A.
Mazzio
and
C. K.
Luscombe
,
Chem. Soc. Rev.
44
,
78
(
2015
).
5.
M.
He
,
F.
Qiu
, and
Z.
Lin
,
Energy Environ. Sci.
6
,
1352
(
2013
).
6.
X.
Guo
,
M.
Baumgarten
, and
K.
Müllen
,
Prog. Polym. Sci.
38
,
1832
(
2013
).
7.
K.
Walzer
,
B.
Maennig
,
M.
Pfeiffer
, and
K.
Leo
,
Chem. Rev.
107
,
1233
(
2007
).
8.
I. E.
Jacobs
and
A. J.
Moulé
,
Adv. Mater.
29
,
1703063
(
2017
).
9.
A.
Hamidi-Sakr
,
L.
Biniek
,
J.-L.
Bantignies
,
D.
Maurin
,
L.
Herrmann
,
N.
Leclerc
,
P.
Lévêque
,
V.
Vijayakumar
,
N.
Zimmermann
, and
M.
Brinkmann
,
Adv. Funct. Mater.
27
,
1700173
(
2017
).
10.
M.
Arvind
,
C. E.
Tait
,
M.
Guerrini
,
J.
Krumland
,
A. M.
Valencia
,
C.
Cocchi
,
A. E.
Mansour
,
N.
Koch
,
S.
Barlow
,
S. R.
Marder
,
J.
Behrends
, and
D.
Neher
,
J. Phys. Chem. B
124
,
7694
(
2020
).
11.
P.
Pingel
,
M.
Arvind
,
L.
Kölln
,
R.
Steyrleuthner
,
F.
Kraffert
,
J.
Behrends
,
S.
Janietz
, and
D.
Neher
,
Adv. Electron. Mater.
2
,
1600204
(
2016
).
12.
T.
Schneider
,
J.
Czolk
,
D.
Landerer
,
S.
Gärtner
,
A.
Puetz
,
M.
Bruns
,
J.
Behrends
, and
A.
Colsmann
,
J. Mater. Chem. A
4
,
14703
(
2016
).
13.
T.
Schneider
,
F.
Limberg
,
K.
Yao
,
A.
Armin
,
N.
Jürgensen
,
J.
Czolk
,
B.
Ebenhoch
,
P.
Friederich
,
W.
Wenzel
,
J.
Behrends
,
H.
Krüger
, and
A.
Colsmann
,
J. Mater. Chem. C
5
,
770
(
2017
).
14.
K. F.
Seidel
,
D.
Lungwitz
,
A.
Opitz
,
T.
Krüger
,
J.
Behrends
,
S. R.
Marder
, and
N.
Koch
,
ACS Appl. Mater. Interfaces
12
,
28801
(
2020
).
15.
B.
Wegner
,
D.
Lungwitz
,
A. E.
Mansour
,
C. E.
Tait
,
N.
Tanaka
,
T.
Zhai
,
S.
Duhm
,
M.
Forster
,
J.
Behrends
,
Y.
Shoji
,
A.
Opitz
,
U.
Scherf
,
E. J. W.
List-Kratochvil
,
T.
Fukushima
, and
N.
Koch
,
Adv. Sci.
7
,
2001322
(
2020
).
16.
V.
Untilova
,
T.
Biskup
,
L.
Biniek
,
V.
Vijayakumar
, and
M.
Brinkmann
,
Macromolecules
53
,
2441
(
2020
).
17.
A. I.
Hofmann
,
R.
Kroon
,
S.
Zokaei
,
E.
Järsvall
,
C.
Malacrida
,
S.
Ludwigs
,
T.
Biskup
, and
C.
Müller
,
Adv. Electron. Mater.
6
,
2000249
(
2020
).
18.
M.
Toybenshlak
and
R.
Carmieli
,
Isr. J. Chem.
59
,
1020
(
2019
).
19.
C.
Enengl
,
S.
Enengl
,
S.
Pluczyk
,
M.
Havlicek
,
M.
Lapkowski
,
H.
Neugebauer
, and
E.
Ehrenfreund
,
ChemPhysChem
17
,
3836
(
2016
).
20.
A.
Carrington
and
A. D.
McLachlan
,
Introduction to Magnetic Resonance. With Applications to Chemistry and Chemical Physics
(
Harper & Row
,
New York
,
1967
).
21.
N. M.
Atherton
,
Principles of Electron Spin Resonance
(
Ellis Horwood Ltd
.,
Chichester
,
1993
).
22.
J. A.
Weil
and
J. R.
Bolton
,
Electron Paramagnetic Resonance: Elementary Theory and Practical Applications
, 2nd ed. (
John Wiley & Sons, Inc
.,
Hoboken
,
2007
).
23.
M.
Brustolon
and
E.
Giamello
,
Electron Paramagnetic Resonance: A Practitioner's Toolkit
(
Wiley
,
Hoboken
,
2009
).
24.
V.
Chechik
,
E.
Carter
, and
D.
Murphy
,
Electron Paramagnetic Resonance
(
Oxford University Press
,
Oxford, UK
,
2016
).
25.
EPR Spectroscopy: Fundamentals and Methods
, edited by
D.
Goldfarb
and
S.
Stoll
(
John Wiley & Sons
,
Chichester, UK
,
2018
).
26.
R. R.
Ernst
,
G.
Bodenhausen
, and
A.
Wokaun
,
Principles of Nuclear Magnetic Resonance in One and Two Dimensions
(
Clarendon Press
,
Oxford
,
1987
).
27.
M. H.
Levitt
,
Spin Dynamics: Basics of Nuclear Magnetic Resonance
, 2nd ed. (
John Wiley & Sons, Ltd
,
Chichester
,
2008
).
28.
A.
Abragam
,
Principles of Nuclear Magnetism
(
Oxford University Press
,
Oxford, UK
,
1961
).
29.
C. P.
Slichter
,
Principles of Magnetic Resonance
(
Harper & Row
,
New York
,
1963
).
30.
C. P.
Poole
and
H. A.
Farach
,
Theory of Magnetic Resonance
, 2nd ed. (
John Wiley & Sons
,
New York
,
1987
).
31.
J. E.
Harriman
,
Theoretical Foundations of Electron Spin Resonance
(
Academic Press
,
New York
,
1978
).
32.
T.
Biskup
,
M.
Sommer
,
S.
Rein
,
D. L.
Meyer
,
M.
Kohlstädt
,
U.
Würfel
, and
S.
Weber
,
Angew. Chem., Int. Ed.
54
,
7707
(
2015
).
33.
D. L.
Meyer
,
N.
Schmidt-Meinzer
,
C.
Matt
,
S.
Rein
,
F.
Lombeck
,
M.
Sommer
, and
T.
Biskup
,
J. Phys. Chem. C
123
,
20071
(
2019
).
34.
D. L.
Meyer
,
R.
Matsidik
,
S.
Huettner
,
M.
Sommer
, and
T.
Biskup
,
Phys. Chem. Chem. Phys.
20
,
2716
(
2018
).
35.
C.
Matt
,
D. L.
Meyer
,
F.
Lombeck
,
M.
Sommer
, and
T.
Biskup
,
Macromolecules
51
,
4341
(
2018
).
37.
G.
Feher
and
A. F.
Kip
,
Phys. Rev.
98
,
337
(
1955
).
38.
V. I.
Krinichnyi
, in
Advanced ESR Methods in Polymer Research
, edited by
S.
Schlick
(
John Wiley & Sons
,
Hoboken, NJ
,
2006
), pp.
307
338
.
39.
C. P.
Poole
,
Electron Spin Resonance. A Comprehensive Treatise on Experimental Techniques
, 2nd ed. (
Dover Publications
,
Mineola, NY
,
1983
).
40.
J.
Niklas
and
O. G.
Poluektov
,
Adv. Energy Mater.
7
,
1602226
(
2017
).
41.
V. S.
Grechishkin
and
N. E.
Aĭnbinder
,
Sov. Phys.-Usp.
10
,
237
(
1967
).
43.
G. E.
Eaton
,
S. S.
Eaton
,
D. P.
Barr
, and
R. T.
Weber
,
Quantitative EPR
(
Springer
,
Wien
,
2010
).
44.
S.
Stoll
and
A.
Schweiger
,
J. Magn. Reson.
178
,
42
(
2006
).
45.
B. R.
Rich
, in
Biographical Memoirs
, edited by
N. A. of Sciences
(
The National Academies Press
,
Washington, DC
,
1995
), Vol.
67
, pp.
221
241
.
46.
F. P.
Brooks
,
The Mythical Man Month
, Anniversary Edition with Four New Chapters Edition (
Addison Wesley Longman
,
Boston
,
1995
).
48.
A.
Schweiger
and
G.
Jeschke
,
Principles of Pulse Electron Paramagnetic Resonance
(
Oxford University Press
,
Oxford
,
1991
).
49.
D.
Kiefer
,
A.
Giovannitti
,
H.
Sun
,
T.
Biskup
,
A.
Hofmann
,
M.
Koopmans
,
C.
Cendra
,
S.
Weber
,
J. A.
Koster
,
E.
Olsson
,
J.
Rivnay
,
S.
Fabiano
,
I.
McCulloch
, and
C.
Müller
,
ACS Energy Lett.
3
,
278
(
2018
).
50.
Y.
Shin
,
M.
Massetti
,
H.
Komber
,
T.
Biskup
,
D.
Nava
,
G.
Lanzani
,
M.
Caironi
, and
M.
Sommer
,
Adv. Electron. Mater.
4
,
1700581
(
2018
).
51.
S. B.
Schmidt
,
T.
Biskup
,
X.
Jiao
,
C. R.
McNeill
, and
M.
Sommer
,
J. Mater. Chem. C
7
,
4466
(
2019
).
52.
S. B.
Schmidt
,
M.
Hönig
,
Y.
Shin
,
M.
Cassinelli
,
A.
Perinot
,
M.
Caironi
,
X.
Jiao
,
C. R.
McNeill
,
D.
Fazzi
,
T.
Biskup
, and
M.
Sommer
,
ACS Appl. Polym. Mater.
2
,
1954
(
2020
).
53.
A.
Aguirre
,
P.
Gast
,
S.
Orlinskii
,
I.
Akimoto
,
E. J. J.
Groenen
,
H. E.
Mkami
,
E.
Goovaerts
, and
S.
Van Doorslaer
,
Phys. Chem. Chem. Phys.
10
,
7129
(
2008
).
54.
S.
Cambré
,
J. D.
Ceuster
,
E.
Goovaerts
,
A.
Bouwen
, and
H.
Detert
,
Appl. Magn. Reson.
31
,
343
(
2007
).
55.
L.
Biniek
,
S.
Pouget
,
D.
Djurado
,
E.
Gonthier
,
K.
Tremel
,
N.
Kayunkid
,
E.
Zaborova
,
N.
Crespo-Monteiro
,
O.
Boyron
,
N.
Leclerc
,
S.
Ludwigs
, and
M.
Brinkmann
,
Macromolecules
47
,
3871
(
2014
).
56.
D.
Nava
,
Y.
Shin
,
M.
Massetti
,
X.
Jiao
,
T.
Biskup
,
M. S.
Jagadeesh
,
A.
Calloni
,
L.
Duò
,
G.
Lanzani
,
C. R.
McNeill
,
M.
Sommer
, and
M.
Caironi
,
ACS Appl. Energy Mater.
1
,
4626
(
2018
).
57.
V. I.
Krinichnyĭ
,
Phys. Solid State
39
,
1
(
1997
).
58.
N.
Srivatsan
,
S.
Weber
,
D.
Kolbasov
, and
J. R.
Norris
,
J. Phys. Chem. B
107
,
2127
(
2003
).
59.
P. L.
Hasjim
,
N.
Ponomarenko
,
S.
Weber
, and
J. R.
Norris
,
J. Phys. Chem. B
114
,
14194
(
2010
).
60.
V.
Vijayakumar
,
P.
Durand
,
H.
Zeng
,
V.
Untilova
,
L.
Herrmann
,
P.
Algayer
,
N.
Leclerc
, and
M.
Brinkmann
,
J. Mater. Chem. C
8
,
16470
(
2020
).
61.
G.
Jeschke
,
V.
Chechik
,
P.
Ionita
,
A.
Godt
,
H.
Zimmermann
,
J.
Banham
,
C. R.
Timmel
,
D.
Hilger
, and
H.
Jung
,
Appl. Magn. Reson.
30
,
473
(
2006
).
62.
See
T.
Biskup
, https://matlab-eprcontrol.docs.till-biskup.de/ for “
eprcontrol: Controlling EPR Hardware
” (
2020
).
63.
See
T.
Biskup
(
2021
). https://docs.aspecd.de/ for “
ASpecD: Analysis of Spectral Data
,”
Zenodo
https://doi.org/10.5281/zenodo.4717937.
64.
See
M.
Schröder
,
P.
Kirchner
, and
T.
Biskup
(
2021
). https://docs.cwepr.de/ for “
cwEPR Python Package
,”
Zenodo
https://doi.org/10.5281/zenodo.4896687.
65.
See
T.
Biskup
, https://docs.spinpy.de/ for “
SpinPy Python Package
” (
2021
).
66.
See
T.
Biskup
, https://docs.fitpy.de/ for “
FitPy Python Package
” (
2021
).
67.
See
T.
Biskup
, https://docs.labinform.de/ for “
LabInform: Laboratory Information System
” (
2021
).
You do not currently have access to this content.