An anisotropic unit cell based on glide symmetry is proposed for tailoring a metasurface that engineers an optically transformed Luneburg lens. Thanks to the optical transformation, the size of the lens is reduced by 25%. The proposed lens is ultrawideband, and it covers multi-octave frequency bands. The required constitutive materials are achieved in an air gap bounded by top and bottom glide-symmetric metasurfaces; i.e., they are off-shifted by half the period. Each surface is implemented in standard printed-circuit-board technology, and its unit cell consists of a grounded substrate with an elliptical holey top cladding surrounded by metalized through-vias. This technology, known as substrate-integrated-holes (SIHs), mimics the operation of holes drilled in a parallel plate but provides the higher effective refractive index required for lens compression. The SIH is attractive for practical applications since most of the energy propagates in the air gap between the two surfaces and, therefore, it features low dielectric losses. Thanks to glide symmetry, the proposed metasurface demonstrates a further enhanced effective refractive index with lower dispersion over an ultra-wide bandwidth in comparison to its non-glide counterpart. A multimodal transfer-matrix approach is here employed to carry out the Bloch analysis of the proposed SIH.

1.
O.
Quevedo-Teruel
,
M.
Ebrahimpouri
, and
F.
Ghasemifard
,
IEEE Commun. Mag.
56
,
36
41
(
2018
).
2.
Y.
Wang
,
J.
Li
,
L.
Huang
,
Y.
Jing
,
A.
Georgakopoulos
, and
P.
Demestichas
,
IEEE Veh. Technol. Mag.
9
,
39
46
(
2014
).
3.
T.
Lambard
,
O.
Lafond
,
M.
Himdi
,
H.
Jeuland
,
S.
Bolioli
, and
L. L.
Coq
,
IEEE Antennas Wireless Propag. Lett.
11
,
256
259
(
2012
).
4.
B.
Yang
,
Z.
Yu
,
J.
Lan
,
R.
Zhang
,
J.
Zhou
, and
W.
Hong
,
IEEE Trans. Microwave Theory Techn.
66
,
3403
3418
(
2018
).
5.
M.
Ettorre
,
R.
Sauleau
, and
L. L.
Coq
,
IEEE Trans. Antennas Propag.
59
,
1093
1100
(
2011
).
6.
C. T.-C.
Nguyen
,
L. P. B.
Katehi
, and
G. M.
Rebeiz
,
Proc. IEEE
86
,
1756
1768
(
1998
).
7.
N. J. G.
Fonseca
,
Q.
Liao
, and
O.
Quevedo-Teruel
,
IEEE Trans. Antennas Propag.
68
,
3410
3422
(
2020
).
8.
O.
Quevedo-Teruel
,
J.
Miao
,
M.
Mattsson
,
A.
Algaba-Brazalez
,
M.
Johansson
, and
L.
Manholm
,
IEEE Antennas Wireless Propag. Lett.
17
,
1588
1592
(
2018
).
9.
R. K.
Luneburg
,
Mathematical Theory of Optics
(
University of California Press
,
1966
).
10.
D. A.
Roberts
,
N.
Kundtz
, and
D. R.
Smith
,
Opt. Express
17
,
16535
16542
(
2009
).
11.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
,
Sci.
312
,
1780
1782
(
2006
).
12.
U.
Leonhardt
,
Science
312
,
1777
1780
(
2006
).
13.
M.
McCall
,
J. B.
Pendry
,
V.
Galdi
,
Y.
Lai
,
S. A. R.
Horsley
,
J.
Li
,
J.
Zhu
,
R. C.
Mitchell-Thomas
,
O.
Quevedo-Teruel
,
P.
Tassin
 et al,
J. Opt.
20
,
063001
(
2018
).
14.
N.
Kundtz
and
D.
Smith
,
Nat. Mater
9
,
129
132
(
2010
).
15.
H.
Ma
and
T.
Cui
,
Nat. Commun.
1
,
124
(
2010
).
16.
K. S.
Kunz
,
J. Appl. Phys.
25
,
642
653
(
1954
).
17.
U.
Leonhardt
,
New J. Phys.
11
,
093040
(
2009
).
18.
R. C.
Mitchell-Thomas
,
O.
Quevedo-Teruel
,
T. M.
McManus
,
S. A. R.
Horsley
, and
Y.
Hao
,
Opt. Lett.
39
,
3551
3554
(
2014
).
19.
A.
Demetriadou
and
Y.
Hao
,
Opt. Express
19
,
19925
19934
(
2011
).
20.
M.
Ebrahimpouri
and
O.
Quevedo-Teruel
,
IEEE Antennas Wireless Propag. Lett.
18
,
1547
1551
(
2019
).
21.
H.
Eskandari
,
M. S.
Majedi
,
A. R.
Attari
, and
O.
Quevedo-Teruel
,
New J. Phys.
21
,
063010
(
2019
).
22.
O.
Quevedo-Teruel
,
H.
Chen
,
A.
Díaz-Rubio
,
G.
Gok
,
A.
Grbic
,
G.
Minatti
,
E.
Martini
,
S.
Maci
,
G. V.
Eleftheriades
,
M.
Chen
 et al,
J. Opt.
21
,
073002
(
2019
).
23.
M.
Faenzi
,
G.
Minatti
,
D.
González-Ovejero
,
F.
Caminita
,
E.
Martini
,
C. D.
Giovampaola
, and
S.
Maci
,
Sci. Rep.
9
,
10178
(
2019
).
24.
O.
Quevedo-Teruel
,
M.
Ebrahimpouri
, and
M. N. M.
Kehn
,
IEEE Antennas Wireless Propag. Lett.
15
,
484
487
(
2016
).
25.
J. D.
de Pineda
,
R. C.
Mitchell-Thomas
,
A. P.
Hibbins
, and
J. R.
Sambles
,
Appl. Phys. Lett.
111
,
211603
(
2017
).
26.
J. D.
de Pineda
,
A. P.
Hibbins
, and
J. R.
Sambles
,
Phys. Rev. B
98
,
205426
(
2018
).
27.
O.
Quevedo-Teruel
,
Q.
Chen
,
F.
Mesa
,
N. J. G.
Fonseca
, and
G.
Valerio
,
IEEE J. Microwave
1
,
457
469
(
2021
).
28.
G.
Valerio
,
F.
Ghasemifard
,
Z.
Sipus
, and
O.
Quevedo-Teruel
,
IEEE Trans. Microwave Theory Techn.
66
,
3210
3223
(
2018
).
29.
A.
Alex-Amor
,
F.
Ghasemifard
,
G.
Valerio
,
M.
Ebrahimpouri
,
P.
Padilla
,
J. M. F.
González
, and
O.
Quevedo-Teruel
,
IEEE Trans. Microwave Theory Techn.
68
,
4236
4248
(
2020
).
30.
Q.
Chen
,
F.
Mesa
,
P.
Padilla
,
X.
Yin
, and
O.
Quevedo-Teruel
,
IEEE Trans. Antennas Propag.
68
,
7777
7784
(
2020
).
31.
M.
Bagheriasl
,
O.
Quevedo-Teruel
, and
G.
Valerio
,
IEEE Trans. Microwave Theory Techn.
67
,
2618
2628
(
2019
).
32.
F.
Mesa
,
G.
Valerio
,
R.
Rodriguez-Berral
, and
O.
Quevedo-Teruel
, “Simulation-assisted efficient computation of the dispersion diagram of periodic structures: A comprehensive overview with applications to filters, leaky-wave antennas and metasurfaces,”
IEEE Antennas Propag. Mag.
(published online, 2021).
33.
Q.
Chen
,
F.
Mesa
,
X.
Yin
, and
O.
Quevedo-Teruel
,
IEEE Trans. Microwave Theory Techn.
68
,
4984
4994
(
2020
).
34.
F.
Xu
and
K.
Wu
,
IEEE Trans. Microwave Theory Techn.
53
,
66
73
(
2005
).
35.
G.
Valerio
,
Z.
Sipus
,
A.
Grbic
, and
O.
Quevedo-Teruel
,
Opt. Lett.
42
,
2026
2029
(
2017
).
You do not currently have access to this content.