Oxygen vacancies (Vo) play significant roles in determining the properties of transition-metal oxides. However, the concentration of Vo cannot be tuned quantitatively by optimizing the preparation conditions, and the precise control of Vo distribution at the atomic scale is even more challenging. Here, by controlling the reversible phase transitions between perovskite LaCoO3 (PV-LCO) and brownmillerite LaCoO2.5, we realize the tuning of Vo in PV-LCO, including the concentration with quantitative precision and the spatial distribution at the atomic scale. With the first principles calculations, we clarify that two thirds of Vo in PV-LCO can be eliminated after a cycle of the reversible phase transitions, and all the residual Vo are confined in specific lattice sites in PV-LCO. Such an ordered distribution of Vo can help to enhance the ferromagnetism of PV-LCO.

1.
J.
Jeong
,
N.
Aetukuri
,
T.
Graf
,
T. D.
Schladt
,
M. G.
Samant
, and
S. S.
Parkin
,
Science
339
(
6126
),
1402
(
2013
).
2.
H. Y.
Hwang
,
Y.
Iwasa
,
M.
Kawasaki
,
B.
Keimer
,
N.
Nagaosa
, and
Y.
Tokura
,
Nat. Mater.
11
(
2
),
103
(
2012
).
3.
H.
Jeen
,
W. S.
Choi
,
M. D.
Biegalski
,
C. M.
Folkman
,
I.-C.
Tung
,
D. D.
Fong
,
J. W.
Freeland
,
D.
Shin
,
H.
Ohta
, and
M. F.
Chisholm
,
Nat. Mater.
12
(
11
),
1057
(
2013
).
4.
S. V.
Kalinin
and
N. A.
Spaldin
,
Science
341
(
6148
),
858
(
2013
).
5.
R.
Eglitis
,
A. I.
Popov
,
J.
Purans
, and
R.
Jia
,
Low Temp. Phys.
46
(
12
),
1206
(
2020
).
6.
D. A.
Muller
,
N.
Nakagawa
,
A.
Ohtomo
,
J. L.
Grazul
, and
H. Y.
Hwang
,
Nature
430
(
7000
),
657
(
2004
).
7.
L.
Yao
,
S.
Inkinen
, and
S.
Van Dijken
,
Nat. Commun.
8
(
1
),
14544
(
2017
).
8.
Y.
Wang
,
C.
Cai
,
L.
Li
,
L.
Yang
,
Y.
Zhou
, and
G.
Zhou
,
AIP Adv.
6
(
9
),
095113
(
2016
).
9.
S.
Picozzi
,
C.
Ma
,
Z.
Yang
,
R.
Bertacco
,
M.
Cantoni
,
A.
Cattoni
,
D.
Petti
,
S.
Brivio
, and
F.
Ciccacci
,
Phys. Rev. B
75
(
9
),
094418
(
2007
).
10.
V.-C.
Lo
,
W. W.-Y.
Chung
,
H.
Cao
, and
X.
Dai
,
J. Appl. Phys.
104
(
6
),
064105
(
2008
).
11.
F.
Liu
,
J.
Wu
,
E.
Yong
,
J.
Li
, and
X. M.
Chen
,
Appl. Phys. Lett.
104
(
8
),
082912
(
2014
).
12.
Y.
Zhang
,
Z.
Cui
,
L.
Zhu
,
Z.
Zhao
,
H.
Liu
,
Q.
Wu
,
J.
Wang
,
H.
Huang
,
Z.
Fu
, and
Y.
Lu
,
Appl. Phys. Lett.
117
(
5
),
052406
(
2020
).
13.
H.
Jeen
,
W. S.
Choi
,
J. W.
Freeland
,
H.
Ohta
,
C. U.
Jung
, and
H. N.
Lee
,
Adv. Mater.
25
(
27
),
3651
(
2013
).
14.
S. B.
Adler
,
Chem. Rev.
104
(
10
),
4791
(
2004
).
15.
J.
Xing
,
K.-J.
Jin
,
H.
Lu
,
M.
He
,
G.
Liu
,
J.
Qiu
, and
G.
Yang
,
Appl. Phys. Lett.
92
(
7
),
071113
(
2008
).
16.
C. L.
Jia
,
M.
Lentzen
, and
K.
Urban
,
Science
299
(
5608
),
870
(
2003
).
17.
Y.-M.
Kim
,
J.
He
,
M. D.
Biegalski
,
H.
Ambaye
,
V.
Lauter
,
H. M.
Christen
,
S. T.
Pantelides
,
S. J.
Pennycook
,
S. V.
Kalinin
, and
A. Y.
Borisevich
,
Nat. Mater.
11
(
10
),
888
(
2012
).
18.
F.
Li
,
F.
Yang
,
Y.
Liang
,
S.
Li
,
Z.
Yang
,
Q.
Zhang
,
W.
Li
,
X.
Zhu
,
L.
Gu
, and
J.
Zhang
,
AIP Adv.
7
(
6
),
065001
(
2017
).
19.
V. V.
Mehta
,
N.
Biskup
,
C.
Jenkins
,
E.
Arenholz
,
M.
Varela
, and
Y.
Suzuki
,
Phys. Rev. B
91
(
14
),
144418
(
2015
).
20.
O. H.
Hansteen
,
H.
Fjellvag
, and
B. C.
Hauback
,
J. Solid State Chem.
141
(
2
),
411
(
1998
).
21.
O. H.
Hansteen
,
H.
Fjellvåg
, and
B. C.
Hauback
,
J. Mater. Chem.
8
(
9
),
2081
(
1998
).
22.
D.
Fuchs
,
C.
Pinta
,
T.
Schwarz
,
P.
Schweiss
,
P.
Nagel
,
S.
Schuppler
,
R.
Schneider
,
M.
Merz
,
G.
Roth
, and
H. V.
Löhneysen
,
Phys. Rev. B
75
(
14
),
144402
(
2007
).
23.
J. W.
Freeland
,
J. X.
Ma
, and
J.
Shi
,
Appl. Phys. Lett.
93
(
21
),
212501
(
2008
).
24.
N.
Biškup
,
J.
Salafranca
,
V.
Mehta
,
M. P.
Oxley
,
Y.
Suzuki
,
S. J.
Pennycook
,
S. T.
Pantelides
, and
M.
Varela
,
Phys. Rev. Lett.
112
(
8
),
087202
(
2014
).
25.
W. S.
Choi
,
J.-H.
Kwon
,
H.
Jeen
,
J. E.
Hamann-Borrero
,
A.
Radi
,
S.
Macke
,
R.
Sutarto
,
F.
He
,
G. A.
Sawatzky
, and
V.
Hinkov
,
Nano Lett.
12
(
9
),
4966
(
2012
).
26.
M. A.
Korotin
,
S. Y.
Ezhov
,
I. V.
Solovyev
,
V. I.
Anisimov
,
D. I.
Khomskii
, and
G. A.
Sawatzky
,
Phys. Rev. B
54
(
8
),
5309
(
1996
).
27.
M. W.
Haverkort
,
Z.
Hu
,
J. C.
Cezar
,
T.
Burnus
,
H.
Hartmann
,
M.
Reuther
,
C.
Zobel
,
T.
Lorenz
,
A.
Tanaka
, and
N. B.
Brookes
,
Phys. Rev. Lett.
97
(
17
),
176405
(
2006
).
28.
D.
Fuchs
,
E.
Arac
,
C.
Pinta
,
S.
Schuppler
,
R.
Schneider
, and
H. V.
Löhneysen
,
Phys. Rev. B
77
(
1
),
014434
(
2008
).
29.
H.
Hsu
,
P.
Blaha
, and
R. M.
Wentzcovitch
,
Phys. Rev. B
85
(
14
),
140404
(
2012
).
30.
H.
Seo
,
P.
Agham
, and
A. A.
Demkov
,
Phys. Rev. B
86
(
1
),
014430
(
2012
).
31.
D.
Meng
,
H.
Guo
,
Z.
Cui
,
C.
Ma
,
J.
Zhao
,
J.
Lu
,
H.
Xu
,
Z.
Wang
,
X.
Hu
, and
Z.
Fu
,
Proc. Natl. Acad. Sci.
115
(
12
),
2873
(
2018
).
32.
Q.
An
,
M.
Meng
,
Z.
Wang
,
Y.
Wang
,
Q.
Zhang
,
Y.
Xia
,
L.
Gu
,
F.
Yang
, and
J.
Guo
,
Phys. Status Solidi A
217
(
1
),
1900848
(
2020
).
33.
C. H.
Chen
,
H.
Kruidhof
,
H. J.
Bouwmeester
, and
A. J.
Burggraaf
,
J. Appl. Electrochem.
27
(
1
),
71
(
1997
).
34.
S.
Royer
,
D.
Duprez
, and
S.
Kaliaguine
,
Catal. Today
112
(
1-4
),
99
(
2006
).
35.
H. U.
Anderson
,
Solid State Ionics
52
(
1-3
),
33
(
1992
).
36.
P. E.
Marti
and
A.
Baiker
,
Catal. Lett.
26
(
1-2
),
71
(
1994
).
37.
Q.
Feng
,
D.
Meng
,
H.
Zhou
,
G.
Liang
,
Z.
Cui
,
H.
Huang
,
J.
Wang
,
J.
Guo
,
C.
Ma
, and
X.
Zhai
,
Phys. Rev. Mater.
3
(
7
),
074406
(
2019
).

Supplementary Material

You do not currently have access to this content.