When we applied colloidal quantum dots (QDs) for quantum dot light emitting diodes, it was well known that shell thickness played an important role in core protection, confinement of electrons and holes, and charge injection efficiency. However, although the shell thickness dependence of electroluminescence properties was reported, carrier injection efficiency has not been discussed in detail. In this paper, we investigated the effect of shell thickness on the carrier injection efficiency that was evaluated by photoelectrochemical measurements. By comparing the product of internal quantum yield of photoluminescence and the evaluated carrier injection efficiency with external quantum efficiency (EQE) for QDs with various shell thicknesses, we found that the optimal shell thickness for increasing EQE is determined by the balance between protection of QD's surface and carrier injection efficiency.

1.
Y.
Arakawa
and
H.
Sakai
,
Appl. Phys. Lett.
40
,
939
941
(
1982
).
2.
L.
Qian
,
Y.
Zheng
,
J.
Xue
, and
P. H.
Holloway
,
Nat. Photonics
5
,
543
548
(
2011
).
3.
B. S.
Mashford
,
M.
Stevenson
,
Z.
Popovic
,
C.
Hamilton
,
Z.
Zhou
,
C.
Breen
,
J.
Steckel
,
V.
Bulovic
,
M.
Bawendi
,
S.
Coe-Sullivan
, and
P. T.
Kazlas
,
Nat. Photonics
7
,
407
412
(
2013
).
4.
X.
Dai
,
Z.
Zhang
,
Y.
Jin
,
Y.
Niu
,
H.
Cao
,
X.
Liang
,
L.
Chen
,
J.
Wang
, and
X.
Peng
,
Nature
515
,
96
99
(
2014
).
5.
O.
Wang
,
L.
Wang
,
Z.
Li
,
Q.
Xu
,
Q.
Lin
,
H.
Wang
,
Z.
Du
,
H.
Shen
, and
L. S.
Li
,
Nanoscale
10
,
5650
5657
(
2018
).
6.
Q.
Lin
,
L.
Wang
,
Z.
Li
,
H.
Shen
,
L.
Guo
,
Y.
Kuang
,
H.
Wang
, and
L. S.
Li
,
ACS Photonics
5
,
939
946
(
2018
).
7.
F.
Wang
,
W.
Sun
,
P.
Liu
,
Z.
Wang
,
J.
Zhang
,
J.
Wei
,
Y.
Li
,
T.
Hayat
,
A.
Alsaedi
, and
Z. F.
Tan
,
J. Phys. Chem. Lett.
10
,
960
965
(
2019
).
8.
D.
Li
,
J.
Bai
,
T.
Zhang
,
C.
Chang
,
X.
Jin
,
Z.
Huang
,
B.
Xua
, and
Q.
Lia
,
Chem. Commun.
55
,
3501
3504
(
2019
).
9.
T.
Cheng
,
F.
Wang
,
W.
Sun
,
Z.
Wang
,
J.
Zhang
,
B.
You
,
Y.
Li
,
T.
Hayat
,
A.
Alsaed
, and
Z. F.
Tan
,
Adv. Electron. Mater.
5
,
1800794
(
2019
).
10.
X.
Qu
,
N.
Zhang
,
R.
Cai
,
B.
Kang
,
S.
Chen
,
B.
Xu
,
K.
Wang
, and
X. W.
Sun
,
Appl. Phys. Lett.
114
,
071101
(
2019
).
11.
H.
Shen
,
Q.
Gao
,
Y.
Zhang
,
Y.
Lin
,
Q.
Lin
,
Z.
Li
,
L.
Chen
,
Z.
Zeng
,
X.
Li
,
Y.
Jia
,
S.
Wang
,
Z.
Du
,
L. S.
Li
, and
Z.
Zhang
,
Nat. Photonics
13
,
192
198
(
2019
).
12.
Y.-H.
Won
,
O.
Cho
,
T.
Kim
,
D.-Y.
Chung
,
T.
Kim
,
H.
Chung
,
H.
Jang
,
J.
Lee
,
D.
Kim
, and
E.
Jang
,
Nature
575
,
634
651
(
2019
).
13.
W.
Cao
,
C.
Xiang
,
Y.
Yang
,
Q.
Chen
,
L.
Chen
,
X.
Yan
, and
L.
Qian
,
Nat. Commun.
9
,
2608
2613
(
2018
).
14.
H.
Shen
,
Q.
Lin
,
W.
Cao
,
C.
Yang
,
N. T.
Shewmon
,
H.
Wang
,
J.
Niu
,
L. S.
Li
, and
J.
Xue
,
Nanoscale
9
,
13583
13591
(
2017
).
15.
J.
Zhou
,
M.
Zhu
,
R.
Meng
,
H.
Qin
, and
X.
Peng
,
J. Am. Chem. Soc.
139
,
16556
16567
(
2017
).
16.
R. D.
Rajapaksha
and
M. I.
Ranasinghe
,
J. Lumin.
192
,
860
866
(
2017
).
17.
F.
Purcell-Milton
,
A. K.
Visheratina
,
V. A.
Kuznetsova
,
A.
Ryan
,
A. O.
Orlova
, and
Y. K.
Gun'ko
,
ACS Nano
11
,
9207
9214
(
2017
).
18.
H.
Shen
,
Q.
Lin
,
H.
Wang
,
L.
Qian
,
Y.
Yang
,
A.
Titov
,
J.
Hyvonen
,
Y.
Zheng
, and
L. S.
Li
,
ACS Appl. Mater. Interfaces
5
,
12011
12016
(
2013
).
19.
J.
Lim
,
B. G.
Jeong
,
M.
Park
,
J. K.
Kim
,
J. M.
Pietryga
,
Y.-S.
Park
,
V. I.
Klimov
,
C.
Lee
,
D. C.
Lee
, and
W. K.
Bae
,
Adv. Mater.
26
,
8034
8040
(
2014
).
20.
T.
Wang
,
B.
Zhu
,
S.
Wang
,
Q.
Yuan
,
H.
Zhang
,
Z.
Kang
,
R.
Wang
,
H.
Zhang
, and
W.
Ji
,
ACS Appl. Mater. Interfaces
10
,
14894
14900
(
2018
).
21.
H.
Zhang
,
J.
Jang
,
W.
Liu
, and
D. V.
Talapin
,
ACS Nano
8
,
7359
7369
(
2014
).
22.
J.
Tang
,
K. W.
Kemp
,
S.
Hoogland
,
K. S.
Jeong
,
H.
Liu
,
L.
Levina
,
M.
Furukawa
,
X.
Wang
,
R.
Debnath
,
D.
Cha
,
K. W.
Chou
,
A.
Fischer
,
A.
Amassian
,
J. B.
Asbury
, and
E. H.
Sargent
,
Nat. Mater.
10
,
765
771
(
2011
).
23.
X.
Li
,
Y.-B.
Zhao
,
F.
Fan
,
L.
Levina
,
M.
Liu
,
R.
Quintero-Bermudez
,
X.
Gong
,
L. N.
Quan
,
J. Z.
Fan
,
Z.
Yang
,
S.
Hoogland
,
O.
Voznyy
,
Z.-H.
Lu
, and
E. H.
Sargent
,
Nat. Photonics
12
,
159
164
(
2018
).
24.
F.
Liu
,
J.
Zhu
,
J.
Wei
,
Y.
Li
,
L.
Hu
,
Y.
Huang
,
O.
Takuya
,
Q.
Shen
,
T.
Toyoda
,
B.
Zhang
,
J.
Yao
, and
S.
Dai
,
J. Phys. Chem. C
118
,
214
222
(
2014
).
25.
H. J.
Yun
,
T.
Paik
,
M. E.
Edley
,
J. B.
Baxter
, and
C. B.
Murray
,
ACS Appl. Mater. Interfaces
6
,
3721
3728
(
2014
).
26.
A.
Shmshad
,
J.
Tang
,
I.
Muhammad
,
D.
Han
,
X.
Zhang
,
S.
Chang
,
Q.
Shi
, and
H.
Zhong
,
J. Phys. Chem. C
123
,
26011
26017
(
2019
).
27.
H.
Nishi
,
S.
Kuwabata
, and
T.
Torimoto
,
J. Phys. Chem. C
117
,
21055
21063
(
2013
).
28.
H.
Nishi
,
T.
Nagano
,
S.
Kuwabata
, and
T.
Torimoto
,
Phys. Chem. Chem. Phys.
16
,
672
675
(
2014
).
29.
J.
Hensel
,
G.
Wang
,
Y.
Li
, and
J. Z.
Zhang
,
Nano Lett.
10
,
478
483
(
2010
).
30.
F. A.
Frame
and
F. E.
Osterloh
,
J. Phys. Chem. C
114
,
10628
10633
(
2010
).
31.
Y.-L.
Lee
,
C.-F.
Chi
, and
S.-Y.
Liau
,
Chem. Mater.
22
,
922
927
(
2010
).
You do not currently have access to this content.