Scaling of planar HfO2-based ferroelectric capacitors is investigated experimentally by varying the capacitor area within five orders of magnitude, under the scope of a limited thermal budget for crystallization. Both Hf0.5Zr0.5O2 (HZO) and Si-doped HfO2 (HSO)-based metal/ferroelectric/metal capacitors with a 10 nm dielectric film thickness and TiN electrodes are demonstrated to be ferroelectric when integrated in a back-end of line (BEOL) of 130 nm CMOS technology, with a maximum thermal budget below 500 °C. When the area of the ferroelectric capacitors is scaled down from 7850 μm2 to 0.28 μm2, no degradation of the remanent polarization (2·PR > 10 μC/cm2 for HSO, > 30 μC/cm2 for HZO) or of the switching kinetics (down to 100 ns at 3 V) is observed. Significant improvement of the field cycling endurance is demonstrated upon area scaling, consistent with the reduction of the total number of defects when devices are shrunk. The results pave the way for future BEOL demonstrations in 130 nm and more advanced nodes with record endurance similar to perovskite ferroelectrics.

1.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
2.
M. H.
Park
,
Y. H.
Lee
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
,
MRS Commun.
8
,
795
808
(
2018
).
3.
D.
Das
,
V.
Gaddam
, and
S.
Jeon
,
IEEE Electron Device Lett.
41
,
34
37
(
2020
).
4.
T.
Schenk
,
C. M.
Fancher
,
M. H.
Park
,
C.
Richter
,
C.
Künneth
,
A.
Kersch
,
J. L.
Jones
,
T.
Mikolajick
, and
U.
Schroeder
,
Adv. Electron. Mater.
5
,
1900303
(
2019
).
5.
S.
Mueller
,
J.
Muller
,
U.
Schroeder
, and
T.
Mikolajick
,
IEEE Trans. Device Mater. Reliab.
13
,
93
97
(
2013
).
6.
A. G.
Chernikova
,
M. G.
Kozodaev
,
D. V.
Negrov
,
E. V.
Korostylev
,
M. H.
Park
,
U.
Schroeder
,
C. S.
Hwang
, and
A. M.
Markeev
,
ACS Appl. Mater. Interfaces
10
,
2701
2708
(
2018
).
7.
M.
Si
,
X.
Lyu
,
P. R.
Shrestha
,
X.
Sun
,
H.
Wang
,
K. P.
Cheung
, and
P. D.
Ye
,
Appl. Phys. Lett.
115
,
072107
(
2019
).
8.
X.
Lyu
,
M.
Si
,
P. R.
Shrestha
,
K. P.
Cheung
, and
P. D.
Ye
, in
IEEE International Electron Devices Meeting (IEDM)
(
2019
), p.
15.2.1
15.2.4
.
9.
T.
Francois
,
J.
Coignus
,
L.
Grenouillet
,
M.
Barlas
,
B.
Bessif
,
N.
Vaxelaire
,
H.
Boutry
,
M.
Coig
,
E.
Vilain
,
N.
Rambal
,
J.-M.
Pedini
,
Y.
Morand
,
F.
Mazen
,
E.
Nowak
, and
F.
Gaillard
, in
International Conference on Solid State Devices and Materials (SSDM)
(
2018
).
10.
P.
Scherrer
,
Nachr. Ges. Wiss. Goettingen.
1918
,
98
100
.
11.
I. C.
Noyan
and
J. B.
Cohen
,
Residual Stress: Measurement by Diffraction and Interpretation
(
Springer-Verlag
,
New York
,
1987
).
12.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
T.
Schenk
,
W.
Lee
,
K. D.
Kim
,
F. P. G.
Fengler
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
,
Nanoscale
9
,
9973
9986
(
2017
).
13.
T. D.
Huan
,
V.
Sharma
,
G. A.
Rossetti
, and
R.
Ramprasad
,
Phys. Rev. B
90
,
064111
(
2014
).
14.
R.
Materlik
,
C.
Künneth
, and
A.
Kersch
,
J. Appl. Phys.
117
,
134109
(
2015
).
15.
T.
Shiraishi
,
K.
Katayama
,
T.
Yokouchi
,
T.
Shimizu
,
T.
Oikawa
,
O.
Sakata
,
H.
Uchida
,
Y.
Imai
,
T.
Kiguchi
,
T. J.
Konno
, and
H.
Funakubo
,
Appl. Phys. Lett.
108
,
262904
(
2016
).
16.
S. J.
Kim
,
D.
Narayan
,
J.-G.
Lee
,
J.
Mohan
,
J. S.
Lee
,
J.
Lee
,
H. S.
Kim
,
Y.-C.
Byun
,
A. T.
Lucero
,
C. D.
Young
,
S. R.
Summerfelt
,
T.
San
,
L.
Colombo
, and
J.
Kim
,
Appl. Phys. Lett.
111
,
242901
(
2017
).
17.
I.
Fina
,
L.
Fàbrega
,
E.
Langenberg
,
X.
Martí
,
F.
Sánchez
,
M.
Varela
, and
J.
Fontcuberta
,
J. Appl. Phys.
109
,
074105
(
2011
).
18.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
,
J.
Müller
,
A.
Kersch
,
U.
Schroeder
,
T.
Mikolajick
, and
C. S.
Hwang
,
Adv. Mater.
27
,
1811
1831
(
2015
).
19.
U.
Schroeder
,
E.
Yurchuk
,
J.
Müller
,
D.
Martin
,
T.
Schenk
,
P.
Polakowski
,
C.
Adelmann
,
M. I.
Popovici
,
S. V.
Kalinin
, and
T.
Mikolajick
,
Jpn. J. Appl. Phys., Part 1
53
,
08LE02
(
2014
).
20.
S.
Clima
,
D. J.
Wouters
,
C.
Adelmann
,
T.
Schenk
,
U.
Schroeder
,
M.
Jurczak
, and
G.
Pourtois
,
Appl. Phys. Lett.
104
,
092906
(
2014
).
21.
J.
Sune
,
IEEE Electron Device Lett.
22
,
296
298
(
2001
).
22.
E. Y.
Wu
and
J.
Suñé
,
IEEE Trans. Electron Devices
56
,
1433
1441
(
2009
).
23.
J.
Lee
,
I.
Chen
, and
C.
Hu
, in
26th Annual Proceedings Reliability Physics Symposium
(
1988
), pp.
131
138
.
24.
T.
Francois
,
J.
Coignus
,
L.
Grenouillet
,
J. P.
Barnes
,
N.
Vaxelaire
,
J.
Ferrand
,
I.
Bottala-Gambetta
,
M.
Gros-Jean
,
S.
Jeannot
, and
P.
Boivin
, in
IEEE 11th International Memory Workshop (IMW)
(
2019
).
25.
A. K.
Tagantsev
,
I.
Stolichnov
,
N.
Setter
,
J. S.
Cross
, and
M.
Tsukada
,
Phys. Rev. B
66
,
214109
(
2002
).
26.
N.
Gong
,
X.
Sun
,
H.
Jiang
,
K. S.
Chang-Liao
,
Q.
Xia
, and
T. P.
Ma
,
Appl. Phys. Lett.
112
,
262903
(
2018
).
27.
A. N.
Kolmogorov
,
Izv. Akad. Nauk SSSR, Ser. Mater.
3
,
355
359
(
1937
).
28.
M.
Avrami
,
J. Chem. Phys.
8
,
212
224
(
1940
).
29.
G.
Sassine
,
D.
Alfaro Robayo
,
C.
Nail
,
J.-F.
Nodin
,
J.
Coignus
,
G.
Molas
, and
E.
Nowak
, in
IEEE International Memory Workshop (IMW)
(
2018
).
You do not currently have access to this content.