Traveling spin waves in magnonic waveguides undergo severe attenuation, which tends to result in a finite propagation length of spin waves, even in magnetic materials with the accessible lowest damping constant, heavily restricting the development of magnonic devices. Compared with the spin waves in traditional waveguides, propagating spin waves along the strip domain wall are expected to exhibit enhanced transmission. Here, we demonstrate theoretically and through micromagnetic simulations that spin–orbit torque associated with a ferromagnet/heavy metal bilayer can efficiently control the attenuation of spin waves along a Néel-type strip domain wall despite the complexity in the ground-state magnetization configuration. The direction of the electric current applied to the heavy-metal layer determines whether these spin waves are amplified or further attenuated otherwise. Remarkably, our simulations reveal that the effective current densities required to efficiently tune the decay of such spin waves are just ∼1010 A m−2, roughly an order smaller than those required in conventional spin waveguides. Our results will enrich the toolset for magnonic technologies.

1.
A.
Chumak
,
V.
Vasyuchka
,
A.
Serga
, and
B.
Hillebrands
,
Nat. Phys.
11
,
453
(
2015
).
2.
A.
Kozhevnikov
,
F.
Gertz
,
G.
Dudko
,
Y.
Filimonov
, and
A.
Khitun
,
Appl. Phys. Lett.
106
,
142409
(
2015
).
3.
G.
Csaba
,
A.
Papp
, and
W.
Porod
,
J. Appl. Phys.
115
,
17C741
(
2014
).
4.
K.
Vogt
,
H.
Schultheiss
,
S.
Jain
,
J. E.
Pearson
,
A.
Hoffmann
,
S. D.
Bader
, and
B.
Hillebrands
,
Appl. Phys. Lett.
101
,
042410
(
2012
).
5.
G.
Duerr
,
K.
Thurner
,
J.
Topp
,
R.
Huber
, and
D.
Grundler
,
Phys. Rev. Lett.
108
,
227202
(
2012
).
6.
F.
Garcia-Sanchez
,
P.
Borys
,
R.
Soucaille
,
J.-P.
Adam
,
R. L.
Stamps
, and
J.-V.
Kim
,
Phys. Rev. Lett.
114
,
247206
(
2015
).
7.
X.
Xing
and
Y.
Zhou
,
NPG Asia Mater.
8
,
e246
(
2016
).
8.
X. S.
Wang
and
X. R.
Wang
, arXiv:1512.05965.
9.
K.
Wagner
,
A.
Kákay
,
K.
Schultheiss
,
A.
Henschke
,
T.
Sebastian
, and
H.
Schultheiss
,
Nat. Nanotechnol.
11
,
432
(
2016
).
10.
X.
Xing
,
P. W. T.
Pong
,
J.
Åkerman
, and
Y.
Zhou
,
Phys. Rev. Appl.
7
,
054016
(
2017
).
11.
E.
Albisetti
,
D.
Petti
,
G.
Sala
,
R.
Silvani
,
S.
Tacchi
,
S.
Finizio
,
S.
Wintz
,
A.
Calò
,
X.
Zheng
,
J.
Raabe
,
E.
Riedo
, and
R.
Bertacco
,
Commun. Phys.
1
,
56
(
2018
).
12.
V.
Sluka
,
T.
Schneider
,
R. A.
Gallardo
,
A.
Kákay
,
M.
Weigand
,
T.
Warnatz
,
R.
Mattheis
,
A.
Roldán-Molina
,
P.
Landeros
,
V.
Tiberkevich
,
A.
Slavin
,
G.
Schütz
,
A.
Erbe
,
A.
Deac
,
J.
Lindner
,
J.
Raabe
,
J.
Fassbender
, and
S.
Wintz
,
Nat. Nanotechnol.
14
,
328
(
2019
).
13.
H.
Yu
,
J.
Xiao
, and
H.
Schultheiss
, “Magnetic texture based magnonics,”
Phys. Rep.
(in press) (
2021
).
14.
S.-M.
Seo
,
K.-J.
Lee
,
H.
Yang
, and
T.
Ono
,
Phys. Rev. Lett.
102
,
147202
(
2009
).
15.
X.
Xing
,
Y. P.
Yu
, and
S. W.
Li
,
Appl. Phys. Lett.
95
,
142508
(
2009
).
16.
K.
An
,
D. R.
Birt
,
C.-F.
Pai
,
K.
Olsson
,
D. C.
Ralph
,
R. A.
Buhrman
, and
X.
Li
,
Phys. Rev. B
89
,
140405
(
2014
).
17.
V. E.
Demidov
,
S.
Urazhdin
,
A. B.
Rinkevich
,
G.
Reiss
, and
S. O.
Demokritov
,
Appl. Phys. Lett.
104
,
152402
(
2014
).
18.
M.
Evelt
,
V. E.
Demidov
,
V.
Bessonov
,
S. O.
Demokritov
,
J. L.
Prieto
,
M.
Muñoz
,
J.
Ben Youssef
,
V. V.
Naletov
,
G.
de Loubens
,
O.
Klein
,
M.
Collet
,
K.
Garcia-Hernandez
,
P.
Bortolotti
,
V.
Cros
, and
A.
Anane
,
Appl. Phys. Lett.
108
,
172406
(
2016
).
19.
O.
Gladii
,
M.
Collet
,
K.
Garcia-Hernandez
,
C.
Cheng
,
S.
Xavier
,
P.
Bortolotti
,
V.
Cros
,
Y.
Henry
,
J.-V.
Kim
,
A.
Anane
, and
M.
Bailleul
,
Appl. Phys. Lett.
108
,
202407
(
2016
).
20.
S.
Woo
and
G. S. D.
Beach
,
J. Appl. Phys.
122
,
093901
(
2017
).
21.
Y.
Tserkovnyak
,
A.
Brataas
, and
G. E. W.
Bauer
,
Phys. Rev. Lett.
88
,
117601
(
2002
).
22.
S.
Woo
,
K.
Litzius
,
B.
Krüger
,
M.-Y.
Im
,
L.
Caretta
,
K.
Richter
,
M.
Mann
,
A.
Krone
,
R. M.
Reeve
,
M.
Weigand
,
P.
Agrawal
,
I.
Lemesh
,
M.-A.
Mawass
,
P.
Fischer
,
M.
Kläui
, and
G. S. D.
Beach
,
Nat. Mater.
15
,
501
(
2016
).
23.
G.
Yu
,
P.
Upadhyaya
,
Y.
Fan
,
J. G.
Alzate
,
W.
Jiang
,
K. L.
Wong
,
S.
Takei
,
S. A.
Bender
,
L.-T.
Chang
,
Y.
Jiang
,
M.
Lang
,
J.
Tang
,
Y.
Wang
,
Y.
Tserkovnyak
,
P. K.
Amiri
, and
K. L.
Wang
,
Nat. Nanotechnol.
9
,
548
(
2014
).
24.
W.
Jiang
,
X.
Zhang
,
G.
Yu
,
W.
Zhang
,
M. B.
Jungfleisch
,
J. E.
Pearson
,
O.
Heinonen
,
K. L.
Wang
,
Y.
Zhou
,
A.
Hoffmann
, and
S. G. E.
te Velthuis
,
Nat. Phys.
13
,
162
(
2016
).
25.
J. E.
Hirsch
,
Phys. Rev. Lett.
83
,
1834
(
1999
).
26.
H.-B.
Braun
,
Phys. Rev. B
50
,
16485
(
1994
).
27.
D. C.
Ralph
and
M. D.
Stiles
,
J. Magn. Magn. Mater.
320
,
1190
(
2008
).
28.
J. M.
Shaw
,
H. T.
Nembach
, and
T. J.
Silva
,
Appl. Phys. Lett.
105
,
062406
(
2014
).
29.
M. A. W.
Schoen
,
D.
Thonig
,
M. L.
Schneider
,
T. J.
Silva
,
H. T.
Nembach
,
O.
Eriksson
,
O.
Karis
, and
J. M.
Shaw
,
Nat. Phys.
12
,
839
(
2016
).
30.
X.
Xing
,
J.
Åkerman
, and
Y.
Zhou
,
Phys. Rev. B
101
,
214432
(
2020
).
31.
M. J.
Donahue
and
D. G.
Porter
, “
OOMMF User's Guide Version 1.0
” (
National Institute of Standards and Technology
,
Gaitherburg, MD
,
1999
), NISTIR 6376, see http://math.nist.gov/oommf/
32.
D. V.
Berkov
and
N. L.
Gorn
,
J. Appl. Phys.
99
,
08Q701
(
2006
).
33.
S.
Bance
,
T.
Schrefl
,
G.
Hrkac
,
A.
Goncharov
,
D. A.
Allwood
, and
J.
Dean
,
J. Appl. Phys.
103
,
07E735
(
2008
).
34.
X.
Xing
,
S. W.
Li
,
X. H.
Huang
, and
Z. G.
Wang
,
AIP Adv.
3
,
032144
(
2013
).
35.
J.
Jorzick
,
S. O.
Demokritov
,
B.
Hillebrands
,
M.
Bailleul
,
C.
Fermon
,
K. Y.
Guslienko
,
A. N.
Slavin
,
D. V.
Berkov
, and
N. L.
Gorn
,
Phys. Rev. Lett.
88
,
047204
(
2002
).
36.
M. P.
Kostylev
,
G.
Gubbiotti
,
J.-G.
Hu
,
G.
Carlotti
,
T.
Ono
, and
R. L.
Stamps
,
Phys. Rev. B
76
,
054422
(
2007
).
37.
V. E.
Demidov
,
M. P.
Kostylev
,
K.
Rott
,
P.
Krzysteczko
,
G.
Reiss
, and
S. O.
Demokritov
,
Appl. Phys. Lett.
95
,
112509
(
2009
).
38.
V. E.
Demidov
,
S. O.
Demokritov
,
K.
Rott
,
P.
Krzysteczko
, and
G.
Reiss
,
Phys. Rev. B
77
,
064406
(
2008
).
39.
P.
Pirro
,
T.
Brächer
,
K.
Vogt
,
B.
Obry
,
H.
Schultheiss
,
B.
Leven
, and
B.
Hillebrands
,
Phys. Status Solidi B
248
,
2404
(
2011
).

Supplementary Material

You do not currently have access to this content.