We characterize niobium nitride (NbN) λ / 2 coplanar waveguide resonators, which were fabricated from a 10-nm-thick film on silicon dioxide grown by sputter deposition. For films grown at 180 °C, we report a superconducting critical temperature of 7.4 K associated with a normal square resistance of 1 k Ω, leading to a kinetic inductance of 192 pH/. We fabricated resonators with a characteristic impedance up to 4.1 k Ω and internal quality factors Q i > 10 4 in the single photon regime at zero magnetic field. Moreover, in the many photon regime, the resonators present a high magnetic field resilience with Q i > 10 4 in a 6 T in-plane magnetic field and in a 300 mT out-of-plane magnetic field. These findings make such resonators a compelling choice for circuit quantum electrodynamics experiments involving quantum systems with small electric dipole moments operated in finite magnetic fields.

1.
A.
Blais
,
R.-S.
Huang
,
A.
Wallraff
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
,”
Phys. Rev. A
69
,
062320
(
2004
).
2.
A.
Blais
,
S. M.
Girvin
, and
W. D.
Oliver
, “
Quantum information processing and quantum optics with circuit quantum electrodynamics
,”
Nat. Phys.
16
,
247
256
(
2020
).
3.
A. A.
Clerk
,
K. W.
Lehnert
,
P.
Bertet
,
J. R.
Petta
, and
Y.
Nakamura
, “
Hybrid quantum systems with circuit quantum electrodynamics
,”
Nat. Phys.
16
,
257
267
(
2020
).
4.
N.
Samkharadze
,
A.
Bruno
,
P.
Scarlino
,
G.
Zheng
,
D. P.
DiVincenzo
,
L.
DiCarlo
, and
L. M. K.
Vandersypen
, “
High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field
,”
Phys. Rev. Appl.
5
,
044004
(
2016
).
5.
L.
Grünhaupt
,
M.
Spiecker
,
D.
Gusenkova
,
N.
Maleeva
,
S. T.
Skacel
,
I.
Takmakov
,
F.
Valenti
,
P.
Winkel
,
H.
Rotzinger
,
W.
Wernsdorfer
,
A. V.
Ustinov
, and
I. M.
Pop
, “
Granular aluminium as a superconducting material for high-impedance quantum circuits
,”
Nat. Mater.
18
,
816
819
(
2019
).
6.
D.
Niepce
,
J.
Burnett
, and
J.
Bylander
, “
High kinetic inductance NbN nanowire superinductors
,”
Phys. Rev. Appl.
11
,
044014
(
2019
).
7.
X.
Mi
,
M.
Benito
,
S.
Putz
,
D.
Zajac
,
T. J. M. G.
Burkard
, and
J.
Petta
, “
A coherent spin–photon interface in silicon
,”
Nature
555
,
599
603
(
2018
).
8.
N.
Samkharadze
,
G.
Zheng
,
N.
Kalhor
,
D.
Brousse
,
A.
Sammak
,
U. C.
Mendes
,
A.
Blais
,
G.
Scappucci
, and
L. M. K.
Vandersypen
, “
Strong spin-photon coupling in silicon
,”
Science
359
,
1123
1127
(
2018
).
9.
A. J.
Landig
,
J.
Koski
,
P.
Scarlino
,
U.
Mendes
,
A.
Blais
,
C.
Reichl
,
W.
Wegscheider
,
A.
Wallraff
,
K.
Ensslin
, and
T.
Ihn
, “
Coherent spin-photon coupling using a resonant exchange qubit
,”
Nature
560
,
179
158
(
2018
).
10.
N. A.
Masluk
,
I. M.
Pop
,
A.
Kamal
,
Z. K.
Minev
, and
M. H.
Devoret
, “
Microwave characterization of Josephson junction arrays: Implementing a low loss superinductance
,”
Phys. Rev. Lett.
109
,
1
5
(
2012
).
11.
M. T.
Bell
,
I. A.
Sadovskyy
,
L. B.
Ioffe
,
A. Y.
Kitaev
, and
M. E.
Gershenson
, “
Quantum superinductor with tunable nonlinearity
,”
Phys. Rev. Lett.
109
,
1
5
(
2012
).arXiv:1206.0307.
12.
B. D.
Josephson
, “
Possible new effects in superconductive tuneeling
,”
Phys. Lett.
1
,
251
(
1962
).
13.
M. A.
Castellanos-Beltran
and
K. W.
Lehnert
, “
Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator
,”
Appl. Phys. Lett.
91
,
083509
(
2007
)..
14.
A.
Shearrow
,
G.
Koolstra
,
S. J.
Whiteley
,
N.
Earnest
,
P. S.
Barry
,
F. J.
Heremans
,
D. D.
Awschalom
,
E.
Shirokoff
, and
D. I.
Schuster
, “
Atomic layer deposition of titanium nitride for quantum circuits
,”
Appl. Phys. Lett.
113
,
212601
(
2018
).
15.
A.
André
,
D.
DeMille
,
J. M.
Doyle
,
M. D.
Lukin
,
S. E.
Maxwell
,
P.
Rabl
,
R. J.
Schoelkopf
, and
P.
Zoller
, “
A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators
,”
Nat. Phys.
2
,
636
642
(
2006
).
16.
M. R.
Delbecq
,
V.
Schmitt
,
F. D.
Parmentier
,
N.
Roch
,
J. J.
Viennot
,
G.
Fève
,
B.
Huard
,
C.
Mora
,
A.
Cottet
, and
T.
Kontos
, “
Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip
,”
Phys. Rev. Lett.
107
,
256804
(
2011
).
17.
T.
Frey
,
P. J.
Leek
,
M.
Beck
,
A.
Blais
,
T.
Ihn
,
K.
Ensslin
, and
A.
Wallraff
, “
Dipole coupling of a double quantum dot to a microwave resonator
,”
Phys. Rev. Lett.
108
,
046807
(
2012
).
18.
A.
Stockklauser
,
P.
Scarlino
,
J. V.
Koski
,
S.
Gasparinetti
,
C. K.
Andersen
,
C.
Reichl
,
W.
Wegscheider
,
T.
Ihn
,
K.
Ensslin
, and
A.
Wallraff
, “
Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator
,”
Phys. Rev. X
7
,
1
5
(
2017
).
19.
J. J.
Viennot
,
M. C.
Dartiailh
,
A.
Cottet
, and
T.
Kontos
, “
Coherent coupling of a single spin to microwave cavity photons
,”
Science
349
,
408
411
(
2015
).
20.
F.
Borjans
,
X. G.
Croot
,
X.
Mi
,
M. J.
Gullans
, and
J. R.
Petta
, “
Long-range microwave mediated interactions between electron spins
,”
Nature
577
,
195
198
(
2020
).
21.
C.
Müller
,
J.
Bourassa
, and
A.
Blais
, “
Detection and manipulation of Majorana fermions in circuit QED
,”
Phys. Rev. B
88
,
1
11
(
2013
).
22.
K.
Yavilberg
,
E.
Ginossar
, and
E.
Grosfeld
, “
Fermion parity measurement and control in Majorana circuit quantum electrodynamics
,”
Phys. Rev. B
92
,
075143
(
2015
).
23.
M. C.
Dartiailh
,
T.
Kontos
,
B.
Douçot
, and
A.
Cottet
, “
Direct Cavity Detection of Majorana Pairs
,”
Phys. Rev. Lett.
118
,
1
7
(
2017
).
24.
D.
Bothner
,
T.
Gaber
,
M.
Kemmler
,
D.
Koelle
, and
R.
Kleiner
, “
Improving the performance of superconducting microwave resonators in magnetic fields
,”
Appl. Phys. Lett.
98
,
102504
(
2011
).
25.
S. E. d
Graaf
,
A. V.
Danilov
,
A.
Adamyan
,
T.
Bauch
, and
S. E.
Kubatkin
, “
Magnetic field resilient superconducting fractal resonators for coupling to free spins
,”
J. Appl. Phys.
112
,
123905
(
2012
).
26.
D.
Bothner
,
D.
Wiedmaier
,
B.
Ferdinand
,
R.
Kleiner
, and
D.
Koelle
, “
Improving superconducting resonators in magnetic fields by reduced field focussing and engineered flux screening
,”
Phys. Rev. Appl.
8
,
034025
(
2017
).
27.
J.
Kroll
,
F.
Borsoi
,
K.
van der Enden
,
W.
Uilhoorn
,
D.
de Jong
,
M.
Quintero-Pérez
,
D.
van Woerkom
,
A.
Bruno
,
S.
Plissard
,
D.
Car
,
E.
Bakkers
,
M.
Cassidy
, and
L.
Kouwenhoven
, “
Magnetic-field-resilient superconducting coplanar-waveguide resonators for hybrid circuit quantum electrodynamics experiments
,”
Phys. Rev. Appl.
11
,
064053
(
2019
).
28.
C. W.
Zollitsch
,
J.
O'Sullivan
,
O.
Kennedy
,
G.
Dold
, and
J. J. L.
Morton
, “
Tuning high-q superconducting resonators by magnetic field reorientation
,”
AIP Adv.
9
,
125225
(
2019
).
29.
K.
Borisov
,
D.
Rieger
,
P.
Winkel
,
F.
Henriques
,
F.
Valenti
,
A.
Ionita
,
M.
Wessbecher
,
M.
Spiecker
,
D.
Gusenkova
,
I. M.
Pop
, and
W.
Wernsdorfer
, “
Superconducting granular aluminum resonators resilient to magnetic fields up to 1 Tesla
,”
Appl. Phys. Lett.
117
,
120502
(
2020
).
30.
B.
Sacépé
, “
Spectroscopie tunnel dans des films minces proche de la transition supraconducteur-isolant
,” Ph.D. thesis (Univ. Grenoble Alpes,
2007
).
31.
M.
Tinkham
,
Introduction to Superconductivity
(
Dover Publicastions, Inc
.,
2004
).
32.
E. A.
Antonova
,
D. R.
Dzhuraev
,
G. P.
Motulevich
, and
V. A.
Sukhov
, “
Superconducting energy gap of niobium nitride
,”
Sov. Phys. JETP
53
,
1270
1271
(
1981
).
33.
Yu.
Krupko
,
V. D.
Nguyen
,
T.
Weißl
,
É.
Dumur
,
J.
Puertas
,
R.
Dassonneville
,
C.
Naud
,
F. W. J.
Hekking
,
D. M.
Basko
,
O.
Buisson
,
N.
Roch
, and
W.
Hasch-Guichard
, “
Kerr nonlinearity in a superconducting Josephson metamaterial
,”
Phys. Rev. B
98
,
094516
(
2018
).
34.
O.
Suchoi
,
B.
Abdo
,
E.
Segev
,
O.
Shtempluck
,
M. P.
Blencowe
, and
E.
Buks
, “
Intermode dephasing in a superconducting stripline resonator
,”
Phys. Rev. B
81
,
174525
(
2010
).
35.
R. N.
Simons
,
Coplanar Waveguide Circuits, Components, and Systems
(
John Wiley & Sons, Inc
.,
2001
).
36.
A. J.
Annunziata
,
D. F.
Santavicca
,
L.
Frunzio
,
G.
Catelani
,
M. J.
Rooks
, and
A.
Frydman
, “
Tunable superconducting nanoinductors
,”
Nanotechnology
21
,
445202
(
2010
).
37.
A.
Adamyan
,
S. E.
de Graaf
,
S.
Kubatkin
, and
A. V.
Danilov
, “
Kinetic inductance as a microwave circuit design variable by multilayer fabrication
,”
Supercond. Sci. Technol.
28
,
085007
(
2015
).
38.
S. E.
de Graaf
,
S. T.
Skacel
,
T.
Hönigl-Decrinis
,
R.
Shaikhaidarov
,
H.
Rotzinger
,
S.
Linzen
,
M.
Ziegler
,
U.
Hübner
,
H. G.
Meyer
,
V.
Antonov
,
E.
Il'ichev
,
A. V.
Ustinov
,
A. Y.
Tzalenchuk
, and
O. V.
Astafiev
, “
Charge quantum interference device
,”
Nat. Phys.
14
,
590
594
(
2018
).
39.
A.
Megrant
,
C.
Neill
,
R.
Barends
,
B.
Chiaro
,
Y.
Chen
,
L.
Feigl
,
J.
Kelly
,
E.
Lucero
,
M.
Mariantoni
,
P. J. J.
O'Malley
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
T. C.
White
,
Y.
Yin
,
J.
Zhao
,
C. J.
Palmstrøm
,
J. M.
Martinis
, and
A. N.
Cleland
, “
Planar superconducting resonators with internal quality factors above one million
,”
Appl. Phys. Lett.
100
,
113510
(
2012
).
40.
J.
Burnett
,
J.
Sagar
,
O. W.
Kennedy
,
P. A.
Warburton
, and
J. C.
Fenton
, “
Low-loss superconducting nanowire circuits using a neon focused ion beam
,”
Phys. Rev. Appl.
8
,
014039
(
2017
).
41.
A.
Engel
,
K.
Inderbitzin
,
A.
Schilling
,
R.
Lusche
,
A.
Semenov
,
H.
Hübers
,
D.
Henrich
,
M.
Hofherr
,
K.
Il'in
, and
M.
Siegel
, “
Temperature-dependence of detection efficiency in NBN and tan SNSPD
,”
IEEE Trans. Appl. Supercond.
23
,
2300505
2300505
(
2013
).
42.
E.
Knehr
,
A.
Kuzmin
,
D. Y.
Vodolazov
,
M.
Ziegler
,
S.
Doerner
,
K.
Ilin
,
M.
Siegel
,
R.
Stolz
, and
H.
Schmidt
, “
Nanowire single-photon detectors made of atomic layer-deposited niobium nitride
,”
Supercond. Sci. Technol.
32
,
125007
(
2019
).
43.
A.
Kamlapure
,
M.
Mondal
,
M.
Chand
,
A.
Mishra
,
J.
Jesudasan
,
V.
Bagwe
,
L.
Benfatto
,
V.
Tripathi
, and
P.
Raychaudhuri
, “
Measurement of magnetic penetration depth and superconducting energy gap in very thin epitaxial NBN films
,”
Appl. Phys. Lett.
96
,
072509
(
2010
).

Supplementary Material

You do not currently have access to this content.