We theoretically study the efficiency limits and performance characteristics of few-layer graphene–semiconductor solar cells (FGSCs) based on a Schottky contact device structure. We model and compare the power conversion efficiency (PCE) of various configurations by explicitly considering the non-Richardson thermionic emission across few-layer graphene/semiconductor Schottky heterostructures. The calculations reveal that ABA-stacked trilayer graphene–silicon solar cell exhibits a maximal conversion efficiency exceeding 26% due to a lower reversed saturation current when compared to that of the ABC-stacking configuration. The thermal coefficients of PCE for ABA and ABC stacking FGSCs are –0.061%/K and –0.048%/K, respectively. Our work offers insights into optimal designs of graphene-based solar cells, thus paving a route toward the design of high-performance FGSC for future nanoscale energy converters.

1.
D.
Akinwande
,
N.
Petrone
, and
J.
Hone
, “
Two-dimensional flexible nanoelectronics
,”
Nat. Commun.
5
,
5678
(
2014
).
2.
G.
Fiori
,
F.
Bonaccorso
,
G.
Iannaccone
,
T.
Palacios
,
D.
Neumaier
,
A.
Seabaugh
,
S. K.
Banerjee
, and
L.
Colombo
, “
Electronics based on two-dimensional materials
,”
Nat. Nanotechnol.
9
,
768
779
(
2014
).
3.
X.
Wang
and
F.
Xia
, “
Van der Waals heterostructures: Stacked 2d materials shed light
,”
Nat. Mater.
14
,
264
265
(
2015
).
4.
J. F.
Rodriguez-Nieva
,
M. S.
Dresselhaus
, and
J. C.
Song
, “
Enhanced thermionic-dominated photoresponse in graphene Schottky junctions
,”
Nano Lett.
16
,
6036
6041
(
2016
).
5.
X.
Li
,
H.
Zhu
,
K.
Wang
,
A.
Cao
,
J.
Wei
,
C.
Li
,
Y.
Jia
,
Z.
Li
,
X.
Li
, and
D.
Wu
, “
Graphene-on-silicon Schottky junction solar cells
,”
Adv. Mater.
22
,
2743
2748
(
2010
).
6.
M.
Javadi
, “
Theoretical efficiency limit of graphene-semiconductor solar cells
,”
Appl. Phys. Lett.
117
,
053902
(
2020
).
7.
X.
Zhang
,
Y.
Zhang
,
Z.
Ye
,
W.
Li
,
T.
Liao
, and
J.
Chen
, “
Graphene-based thermionic solar cells
,”
IEEE Electron Device Lett.
39
,
383
385
(
2018
).
8.
Y.
Wang
,
J.
Zhang
,
G.
Liang
,
Y.
Shi
,
Y.
Zhang
,
Z. R.
Kudrynskyi
,
Z. D.
Kovalyuk
,
A.
Patanè
,
Q.
Xin
, and
A.
Song
, “
Schottky-barrier thin-film transistors based on HfO2-capped InSe
,”
Appl. Phys. Lett.
115
,
033502
(
2019
).
9.
W.
Choi
,
D.
Yin
,
S.
Choo
,
S.-H.
Jeong
,
H.-J.
Kwon
,
Y.
Yoon
, and
S.
Kim
, “
Low-temperature behaviors of multilayer MoS2 transistors with ohmic and Schottky contacts
,”
Appl. Phys. Lett.
115
,
033501
(
2019
).
10.
B.
Jiang
,
H.
Huang
,
R.
Chen
,
G.
Li
,
D.
Flandre
,
D.
Wan
,
X.
Chen
,
X.
Liu
,
C.
Ye
, and
L.
Liao
, “
Black phosphorus field effect transistors stable in harsh conditions via surface engineering
,”
Appl. Phys. Lett.
117
,
111602
(
2020
).
11.
O.
Lopez-Sanchez
,
D.
Lembke
,
M.
Kayci
,
A.
Radenovic
, and
A.
Kis
, “
Ultrasensitive photodetectors based on monolayer MoS2
,”
Nat. Nanotechnol.
8
,
497
501
(
2013
).
12.
H.-Y.
Kim
,
K.
Lee
,
N.
McEvoy
,
C.
Yim
, and
G. S.
Duesberg
, “
Chemically modulated graphene diodes
,”
Nano Lett.
13
,
2182
2188
(
2013
).
13.
D.
Li
,
M.
Chen
,
Q.
Zong
, and
Z.
Zhang
, “
Floating-gate manipulated graphene-black phosphorus heterojunction for nonvolatile ambipolar Schottky junction memories, memory inverter circuits, and logic rectifiers
,”
Nano Lett.
17
,
6353
6359
(
2017
).
14.
S.
Das
,
D.
Pandey
,
J.
Thomas
, and
T.
Roy
, “
The role of graphene and other 2d materials in solar photovoltaics
,”
Adv. Mater.
31
,
1802722
(
2019
).
15.
K.
Cheng
,
Y.
Guo
,
N.
Han
,
X.
Jiang
,
J.
Zhang
,
R.
Ahuja
,
Y.
Su
, and
J.
Zhao
, “
2d lateral heterostructures of group-iii monochalcogenide: Potential photovoltaic applications
,”
Appl. Phys. Lett.
112
,
143902
(
2018
).
16.
X.
Li
,
Z.
Lv
, and
H.
Zhu
, “
Carbon/silicon heterojunction solar cells: State of the art and prospects
,”
Adv. Mater.
27
,
6549
6574
(
2015
).
17.
R.
Won
, “
Photovoltaics: Graphene–silicon solar cells
,”
Nat. Photonics
4
,
411
(
2010
).
18.
K.
Ihm
,
J. T.
Lim
,
K.-J.
Lee
,
J. W.
Kwon
,
T.-H.
Kang
,
S.
Chung
,
S.
Bae
,
J. H.
Kim
,
B. H.
Hong
, and
G. Y.
Yeom
, “
Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell
,”
Appl. Phys. Lett.
97
,
032113
(
2010
).
19.
Y.
Li
,
W.
Yang
,
Z.
Tu
,
Z.
Liu
,
F.
Yang
,
L.
Zhang
, and
R.
Hatakeyama
, “
Schottky junction solar cells based on graphene with different numbers of layers
,”
Appl. Phys. Lett.
104
,
043903
(
2014
).
20.
X.
Miao
,
S.
Tongay
,
M. K.
Petterson
,
K.
Berke
,
A. G.
Rinzler
,
B. R.
Appleton
, and
A. F.
Hebard
, “
High efficiency graphene solar cells by chemical doping
,”
Nano Lett.
12
,
2745
2750
(
2012
).
21.
E.
Shi
,
H.
Li
,
L.
Yang
,
L.
Zhang
,
Z.
Li
,
P.
Li
,
Y.
Shang
,
S.
Wu
,
X.
Li
,
J.
Wei
 et al, “
Colloidal antireflection coating improves graphene–silicon solar cells
,”
Nano Lett.
13
,
1776
1781
(
2013
).
22.
J.-H.
Meng
,
X.
Liu
,
X.-W.
Zhang
,
Y.
Zhang
,
H.-L.
Wang
,
Z.-G.
Yin
,
Y.-Z.
Zhang
,
H.
Liu
,
J.-B.
You
, and
H.
Yan
, “
Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer
,”
Nano Energy
28
,
44
50
(
2016
).
23.
Y.
Song
,
X.
Li
,
C.
Mackin
,
X.
Zhang
,
W.
Fang
,
T.
Palacios
,
H.
Zhu
, and
J.
Kong
, “
Role of interfacial oxide in high-efficiency graphene–silicon Schottky barrier solar cells
,”
Nano Lett.
15
,
2104
2110
(
2015
).
24.
X.
Li
,
W.
Chen
,
S.
Zhang
,
Z.
Wu
,
P.
Wang
,
Z.
Xu
,
H.
Chen
,
W.
Yin
,
H.
Zhong
, and
S.
Lin
, “
18.5% efficient graphene/gaas van der Waals heterostructure solar cell
,”
Nano Energy
16
,
310
319
(
2015
).
25.
M.
Nakamura
and
L.
Hirasawa
, “
Electric transport and magnetic properties in multilayer graphene
,”
Phys. Rev. B
77
,
045429
(
2008
).
26.
S.-E.
Zhu
,
S.
Yuan
, and
G.
Janssen
, “
Optical transmittance of multilayer graphene
,”
Europhys. Lett.
108
,
17007
(
2014
).
27.
K. F.
Mak
,
M. Y.
Sfeir
,
J. A.
Misewich
, and
T. F.
Heinz
, “
The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
14999
15004
(
2010
).
28.
Y. S.
Ang
and
L. K.
Ang
, “
Current-temperature scaling for a Schottky interface with nonparabolic energy dispersion
,”
Phys. Rev. Appl.
6
,
034013
(
2016
).
29.
D.
Sinha
and
J. U.
Lee
, “
Ideal graphene/silicon Schottky junction diodes
,”
Nano Lett.
14
,
4660
4664
(
2014
).
30.
Y. S.
Ang
,
H. Y.
Yang
, and
L. K.
Ang
, “
Universal scaling laws in Schottky heterostructures based on two-dimensional materials
,”
Phys. Rev. Lett.
121
,
056802
(
2018
).
31.
M.
Trushin
, “
Theory of thermionic emission from a two-dimensional conductor and its application to a graphene-semiconductor Schottky junction
,”
Appl. Phys. Lett.
112
,
171109
(
2018
).
32.
M.
Javadi
,
A.
Noroozi
,
A.
Mazaheri
, and
Y.
Abdi
, “
Sequentially assembled graphene layers on silicon, the role of uncertainty principles in graphene–silicon Schottky junctions
,”
Adv. Opt. Mater.
7
,
1900470
(
2019
).
33.
W.
Jie
,
F.
Zheng
, and
J.
Hao
, “
Graphene/gallium arsenide-based Schottky junction solar cells
,”
Appl. Phys. Lett.
103
,
233111
(
2013
).
34.
A. C.
Neto
,
F.
Guinea
,
N. M.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
(
2009
).
35.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2006
).
36.
R. T.
Tung
, “
The physics and chemistry of the Schottky barrier height
,”
Appl. Phys. Rev.
1
,
011304
(
2014
).
37.
A.
Di Bartolomeo
, “
Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction
,”
Phys. Rep.
606
,
1
58
(
2016
).
38.
R. R.
Nair
,
P.
Blake
,
A. N.
Grigorenko
,
K. S.
Novoselov
,
T. J.
Booth
,
T.
Stauber
,
N. M.
Peres
, and
A. K.
Geim
, “
Fine structure constant defines visual transparency of graphene
,”
Science
320
,
1308
1308
(
2008
).
39.
F.
Xia
,
V.
Perebeinos
,
Y.-m.
Lin
,
Y.
Wu
, and
P.
Avouris
, “
The origins and limits of metal–graphene junction resistance
,”
Nat. Nanotechnol.
6
,
179
184
(
2011
).
40.
M.
Massicotte
,
P.
Schmidt
,
F.
Vialla
,
K.
Watanabe
,
T.
Taniguchi
,
K.-J.
Tielrooij
, and
F. H.
Koppens
, “
Photo-thermionic effect in vertical graphene heterostructures
,”
Nat. Commun.
7
,
12174
(
2016
).
41.
C.
Xie
,
X.
Zhang
,
Y.
Wu
,
X.
Zhang
,
X.
Zhang
,
Y.
Wang
,
W.
Zhang
,
P.
Gao
,
Y.
Han
, and
J.
Jie
, “
Surface passivation and band engineering: A way toward high efficiency graphene–planar Si solar cells
,”
J. Mater. Chem., A
1
,
8567
8574
(
2013
).
You do not currently have access to this content.