Hardware implementations of Artificial Neural Networks (ANNs) using conventional binary arithmetic units are computationally expensive and energy-intensive together with large area footprints. Stochastic computing (SC) is an unconventional computing paradigm that operates on stochastic bit streams. It can offer low-power and area-efficient hardware implementations and has shown promising results when applied to ANN hardware circuits. SC relies on stochastic number generators (SNGs) to map input binary numbers to stochastic bit streams. The SNGs are conventionally implemented using random number generators (RNGs) and comparators. Linear feedback shifted registers (LFSRs) are typically used as the RNGs, which need far more area and power than the SC core, counteracting the latter's main advantages. To mitigate this problem, in this Letter, RNGs employing Spin–Orbit Torque (SOT)-induced stochastic switching of perpendicularly magnetized Ta/CoFeB/MgO nanodevices have been proposed. Furthermore, the SOT true random number generator (TRNG) is integrated with the simple CMOS stochastic computing circuits to perform a stochastic artificial neural network. To further optimize power and area efficiency, a fully parallel architecture and TRNG-sharing scheme are presented. The proposed stochastic ANN using the SOT-based TRNG obtains a negligible inference accuracy loss, compared with the binary version, and achieves 9× and 25× improvement in terms of area and power, respectively, compared with the ANN using LFSRs.

1.
P.
Bashivan
,
K.
Kar
, and
J. J.
DiCarlo
,
Science
364
(
6439
),
eaav9436
(
2019
).
2.
A.
Prieto
,
B.
Prieto
,
E.
Ortigosa
,
E.
Ros
,
F.
Pelayo
,
J.
Ortega
, and
I.
Rojas
,
Neurocomputing
214
,
242
(
2016
).
3.
A. K.
Jain
,
M.
Jianchang
, and
K. M.
Mohiuddin
,
Computer
29
(
3
),
31
(
1996
).
4.
G.
Zhang
,
B. E.
Patuwo
, and
M. Y.
Hu
,
Int. J. Forecast.
14
(
1
),
35
(
1998
).
5.
T.
Jungwirth
,
J.
Sinova
,
A.
Manchon
,
X.
Marti
,
J.
Wunderlich
, and
C.
Felser
,
Nat. Phys.
14
(
3
),
200
(
2018
).
6.
F.
Pulizzi
,
Nat. Mater.
11
(
5
),
367
(
2012
).
7.
S.
Bhatti
,
R.
Sbiaa
,
A.
Hirohata
,
H.
Ohno
,
S.
Fukami
, and
S. N.
Piramanayagam
,
Mater. Today
20
(
9
),
530
(
2017
).
8.
Y.
Yang
,
P.
Sheridan
, and
W.
Lu
,
Appl. Phys. Lett.
100
(
20
),
203112
(
2012
).
9.
X.
Liu
,
S. M.
Sadaf
,
S.
Park
,
S.
Kim
,
E.
Cha
,
D.
Lee
,
G.
Jung
, and
H.
Hwang
,
IEEE Electron Device Lett.
34
(
2
),
235
(
2013
).
10.
L.
Wang
,
L.
Tu
, and
J.
Wen
,
Sci. Technol. Adv. Mater.
18
(
1
),
406
(
2017
).
11.
L.
Wang
,
S.-R.
Lu
, and
J.
Wen
,
Nanoscale Res. Lett.
12
(
1
),
347
(
2017
).
12.
A.
Alaghi
and
J. P.
Hayes
,
ACM Trans. Embedded Comput. Syst.
12
(
2s
),
1
(
2013
).
13.
B. R.
Gaines
, in
Advances in Information Systems Science: Volume 2
, edited by
J. T.
Tou
(
Springer US
,
Boston, MA
,
1969
), p.
37
.
14.
B. D.
Brown
and
H. C.
Card
,
IEEE Trans. Comput.
50
(
9
),
891
(
2001
).
15.
J.
Yu
,
K.
Kim
,
J.
Lee
, and
K.
Choi
, “
Accurate and efficient stochastic computing hardware for convolutional neural networks
,” in
2017 IEEE International Conference on Computer Design (ICCD)
(
IEEE
,
2017
), p.
105
.
16.
A.
Alaghi
,
W.
Qian
, and
J. P.
Hayes
,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
37
(
8
),
1515
(
2018
).
17.
M.
Riedel
, in
Stochastic Computing: Techniques and Applications
, edited by
W. J.
Gross
and
V. C.
Gaudet
(
Springer International Publishing
,
Cham
,
2019
), p.
121
.
18.
A.
Ardakani
,
F.
Leduc-Primeau
,
N.
Onizawa
,
T.
Hanyu
, and
W. J.
Gross
,
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
25
(
10
),
2688
(
2017
).
19.
S.
Sahay
and
M.
Suri
,
Semicond. Sci. Technol.
32
(
12
),
123001
(
2017
).
20.
H.
Chen
,
S.
Zhang
,
N.
Xu
,
M.
Song
,
X.
Li
,
R.
Li
,
Y.
Zeng
,
J.
Hong
, and
L.
You
, in
2018 IEEE International Electron Devices Meeting (IEDM)
(
2018
), p. 36.5.1.
21.
A.
Fukushima
,
T.
Seki
,
K.
Yakushiji
,
H.
Kubota
,
H.
Imamura
,
S.
Yuasa
, and
K.
Ando
,
Appl. Phys. Express
7
,
083001
(
2014
).
22.
W. A.
Borders
,
H.
Akima
,
S.
Fukami
,
S.
Moriya
,
S.
Kurihara
,
Y.
Horio
,
S.
Sato
, and
H.
Ohno
,
Appl. Phys. Express
10
(
1
),
013007
(
2017
).
23.
Y.
Cao
,
A.
Rushforth
,
Y.
Sheng
,
H.
Zheng
, and
K.
Wang
,
Adv. Funct. Mater.
29
(
25
),
1970175
(
2019
).
24.
K. L.
Wang
,
J. G.
Alzate
, and
P.
Khalili Amiri
,
J. Phys. D
46
(
7
),
074003
(
2013
).
25.
S. A.
Wolf
,
J.
Lu
,
M. R.
Stan
,
E.
Chen
, and
D. M.
Treger
,
Proc. IEEE
98
(
12
),
2155
(
2010
).
26.
I. M.
Miron
,
K.
Garello
,
G.
Gaudin
,
P.-J.
Zermatten
,
M. V.
Costache
,
S.
Auffret
,
S.
Bandiera
,
B.
Rodmacq
,
A.
Schuhl
, and
P.
Gambardella
,
Nature
476
(
7359
),
189
(
2011
).
27.
L.
Liu
,
C.-F.
Pai
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Science
336
(
6081
),
555
(
2012
).
28.
J.
Ma
,
J.
Hu
,
Z.
Li
, and
C.-W.
Nan
,
Adv. Mater.
23
(
9
),
1062
(
2011
).
29.
Y.
Cao
,
Y.
Sheng
,
K. W.
Edmonds
,
Y.
Ji
,
H.
Zheng
, and
K.
Wang
,
Adv. Mater.
32
(
16
),
1907929
(
2020
).
30.
Q.
Ma
,
Y.
Li
,
D. B.
Gopman
,
Y. P.
Kabanov
,
R. D.
Shull
, and
C. L.
Chien
,
Phys. Rev. Lett.
120
(
11
),
117703
(
2018
).
31.
S.
Fukami
,
T.
Anekawa
,
C.
Zhang
, and
H.
Ohno
,
Nat. Nanotechnol.
11
,
621
(
2016
).
32.
L.
You
,
O.
Lee
,
D.
Bhowmik
,
D.
Labanowski
,
J.
Hong
,
J.
Bokor
, and
S.
Salahuddin
,
Proc. Natl. Acad. Sci. U. S. A.
112
(
33
),
10310
(
2015
).
33.
M.
Kazemi
,
G. E.
Rowlands
,
E.
Ipek
,
R. A.
Buhrman
, and
E. G.
Friedman
,
IEEE Trans. Electron Devices
63
(
2
),
848
(
2016
).
34.
Y.
Kim
,
X.
Fong
, and
K.
Roy
,
IEEE Magn. Lett.
6
,
1
(
2015
).
35.
J.
Hu
,
B.
Li
,
C.
Ma
,
D.
Lilja
, and
S. J.
Koester
,
IEEE Trans. Electron Devices
66
(
8
),
3620
(
2019
).
36.
G.
Finocchio
,
T.
Moriyama
,
R.
De Rose
,
G.
Siracusano
,
M.
Lanuzza
,
V.
Puliafito
,
S.
Chiappini
,
F.
Crupi
,
Z.
Zeng
,
T.
Ono
, and
M.
Carpentieri
,
J. Appl. Phys.
128
(
3
),
033904
(
2020
).
37.
P.
Debashis
,
R.
Faria
,
K. Y.
Camsari
, and
Z.
Chen
,
IEEE Magn. Lett.
9
,
1
(
2018
).
38.
K.
Cai
,
M.
Yang
,
H.
Ju
,
S.
Wang
,
Y.
Ji
,
B.
Li
,
K. W.
Edmonds
,
Y.
Sheng
,
B.
Zhang
,
N.
Zhang
,
S.
Liu
,
H.
Zheng
, and
K.
Wang
,
Nat. Mater.
16
(
7
),
712
(
2017
).
39.
Y.-C.
Lau
,
D.
Betto
,
K.
Rode
,
J. M. D.
Coey
, and
P.
Stamenov
,
Nat. Nanotechnol.
11
(
9
),
758
(
2016
).
40.
G.
Yu
,
P.
Upadhyaya
,
Y.
Fan
,
J. G.
Alzate
,
W.
Jiang
,
K. L.
Wong
,
S.
Takei
,
S. A.
Bender
,
L.-T.
Chang
,
Y.
Jiang
,
M.
Lang
,
J.
Tang
,
Y.
Wang
,
Y.
Tserkovnyak
,
P. K.
Amiri
, and
K. L.
Wang
,
Nat. Nanotechnol.
9
(
7
),
548
(
2014
).
41.
See https://github.com/arcetri/sts for “National Institute of Standards and Technology, NIST Statistical Test Suite, 2017.”
42.
J.
Hayes
, in
Proceedings-Design Automation Conference
(
2015
).
43.
A.
Zhakatayev
,
S.
Lee
,
H.
Sim
, and
J.
Lee
, in
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)
(
2018
), p.
1
.
44.
Y.
LeCun
,
C.
Cortes
, and
C. J. C.
Burges
, see http://yann.lecun.com/exdb/mnist/ for “The MNIST Database of Handwritten Digits,
1998
.”
45.
See https://si2.org/open-cell-library/ for “
Nangate Inc.
, Nangate 45 nm Open Cell Library,
2009
.”

Supplementary Material

You do not currently have access to this content.