Quantum dots fabricated using methods compatible with semiconductor manufacturing are promising for quantum information processing. In order to fully utilize the potential of this platform, scaling quantum dot arrays along two dimensions is a key step. Here, we demonstrate a two-dimensional quantum dot array where each quantum dot is tuned to single-charge occupancy, verified by simultaneous measurements using two integrated radio frequency charge sensors. We achieve this by using planar germanium quantum dots with low disorder and a small effective mass, allowing the incorporation of dedicated barrier gates to control the coupling of the quantum dots. We measure the hole charge filling spectrum and show that we can tune single-hole quantum dots from isolated quantum dots to strongly exchange coupled quantum dots. These results motivate the use of planar germanium quantum dots as building blocks for quantum simulation and computation.

1.
D. P.
DiVincenzo
, “
The physical implementation of quantum computation
,”
Prog. Phys.
48
,
771
783
(
2000
).
2.
B.
Terhal
, “
Quantum error correction for quantum memories
,”
Rev. Mod. Phys.
87
,
307
(
2015
).
3.
D. P.
Franke
,
J. S.
Clarke
,
L. M. K.
Vandersypen
, and
M.
Veldhorst
, “
Rent's rule and extensibility in quantum computing
,”
Microprocessors Microsyst.
67
,
1
7
(
2019
).
4.
D.
Loss
and
D. P.
DiVincenzo
, “
Quantum computation with quantum dots
,”
Phys. Rev. A
57
,
120
126
(
1998
).
5.
L. M. K.
Vandersypen
,
H.
Bluhm
,
J. S.
Clarke
,
A. S.
Dzurak
,
R.
Ishihara
,
A.
Morello
,
D. J.
Reilly
,
L. R.
Schreiber
, and
M.
Veldhorst
, “
Interfacing spin qubits in quantum dots and donors-hot, dense, and coherent
,”
npj Quantum Inf.
3
,
34
(
2017
).
6.
R.
Li
,
L.
Petit
,
D. P.
Franke
,
J. P.
Dehollain
,
J.
Helsen
,
M.
Steudtner
,
N. K.
Thomas
,
Z. R.
Yoscovits
,
K. J.
Singh
,
S.
Wehner
,
L. M.
Vandersypen
,
J. S.
Clarke
, and
M.
Veldhorst
, “
A crossbar network for silicon quantum dot qubits
,”
Sci. Adv.
4
,
eaar3960
(
2018
).
7.
J.
Helsen
,
M.
Steudtner
,
M.
Veldhorst
, and
S.
Wehner
, “
Quantum error correction in crossbar architectures
,”
Quantum Sci. Technol.
3
,
035005
(
2018
).
8.
J. R.
Petta
,
A. C.
Johnson
,
J. M.
Taylor
,
E. A.
Laird
,
A.
Yacoby
,
M. D.
Lukin
,
C. M.
Marcus
,
M. P.
Hanson
, and
A. C.
Gossard
, “
Coherent manipulation of electron spins in semiconductor quantum dots
,”
Science
309
,
2180
2184
(
2005
).
9.
F. H.
Koppens
,
C.
Buizert
,
K. J.
Tielrooij
,
I. T.
Vink
,
K. C.
Nowack
,
T.
Meunier
,
L. P.
Kouwenhoven
, and
L. M.
Vandersypen
, “
Driven coherent oscillations of a single electron spin in a quantum dot
,”
Nature
442
,
766
771
(
2006
).
10.
Y. P.
Kandel
,
H.
Qiao
,
S.
Fallahi
,
G. C.
Gardner
,
M. J.
Manfra
, and
J. M.
Nichol
, “
Coherent spin-state transfer via Heisenberg exchange
,”
Nature
573
,
553
557
(
2019
).
11.
U.
Mukhopadhyay
,
J. P.
Dehollain
,
C.
Reichl
,
W.
Wegscheider
, and
L. M. K.
Vandersypen
, “
A 2 × 2 quantum dot array with controllable inter-quantum dot tunnel couplings
,”
Appl. Phys. Lett.
112
,
183505
(
2018
).
12.
K.
Itoh
,
E. E.
Haller
,
W. L.
Hansen
,
J. W.
Farmer
,
V. I.
Ozhogin
,
A.
Rudnev
, and
A.
Tikhomirov
, “
High purity isotopically enriched 70 Ge and 74 Ge single crystals: Isotope separation, growth, and properties
,”
J. Mater. Res.
8
,
1341
1347
(
1993
).
13.
K. M.
Itoh
and
H.
Watanabe
, “
Isotope engineering of silicon and diamond for quantum computing and sensing applications
,”
MRS Commun.
4
(
4
),
143
157
(
2014
).
14.
M.
Veldhorst
,
J. C.
Hwang
,
C. H.
Yang
,
A. W.
Leenstra
,
B.
De Ronde
,
J. P.
Dehollain
,
J. T.
Muhonen
,
F. E.
Hudson
,
K. M.
Itoh
,
A.
Morello
, and
A. S.
Dzurak
, “
An addressable quantum dot qubit with fault-tolerant control-fidelity
,”
Nat. Nanotechnol.
9
,
981
985
(
2014
).
15.
J. T.
Muhonen
,
J. P.
Dehollain
,
A.
Laucht
,
F. E.
Hudson
,
R.
Kalra
,
T.
Sekiguchi
,
K. M.
Kohei
,
D. N.
Jamieson
,
J. C.
McCallum
,
A. S.
Dzurak
, and
A.
Morello
, “
Storing quantum information for 30 seconds in a nanoelectronic device
,”
Nat. Nanotechnol.
9
,
986
991
(
2014
).
16.
D. M.
Zajac
,
T. M.
Hazard
,
X.
Mi
,
E.
Nielsen
, and
J. R.
Petta
, “
Scalable gate architecture for a one-dimensional array of semiconductor quantum dots
,”
Phys. Rev. Appl.
6
,
054013
(
2016
).
17.
F. A.
Zwanenburg
,
A. S.
Dzurak
,
A.
Morello
,
M. Y.
Simmons
,
L. C. L.
Hollenberg
,
G.
KLimeck
,
S.
Rogge
,
S. N.
Coppersmith
, and
M. A.
Eriksson
, “
Silicon quantum electronics
,”
Rev. Mod. Phys.
85
,
961
(
2013
).
18.
R.
Maurand
,
X.
Jehl
,
D.
Kotekar-Patil
,
A.
Corna
,
H.
Bohuslavskyi
,
R.
Lavievville
,
L.
Hutin
,
S.
Barraud
,
M.
Vinet
,
M.
Sanquer
, and
S.
De Franceschi
, “
A CMOS silicon spin qubit
,”
Nat. Commun.
7
,
13575
(
2016
).
19.
R.
Pillarisetty
,
N.
Thomas
,
H. C.
George
,
K.
Singh
,
J.
Roberts
,
L.
Lampert
,
P.
Amin
,
T. F.
Watson
,
G.
Zheng
,
J.
Torres
 et al, “
Qubit device integration using advanced semiconductor manufacturing process technology
,” in
IEEE International Electron Devices Meeting (IEDM)
(
2018
), pp.
3
6
.
20.
F.
Ansaloni
,
A.
Chatterjee
,
H.
Bohuslavskyi
,
B.
Bertrand
,
L.
Hutin
,
M.
Vinet
, and
F.
Kuemmeth
, “
Single-electron control in a foundry-fabricated two-dimensional qubit array
,” arXiv:2004.00894 (
2020
).
21.
E.
Chanrion
,
D. J.
Niegemann
,
B.
Bertrand
,
C.
Spence
,
B.
Jadot
,
J.
Li
,
P. A.
Mortemousque
,
L.
Hutin
,
R.
Maurand
,
X.
Jehl
 et al, “
Charge detection in an array of CMOS quantum dots
,”
Phys. Rev. Appl.
14
,
024066
(
2020
).
22.
W.
Gilbert
,
A.
Saraiva
,
W. H.
Lim
,
C. H.
Yang
,
A.
Laucht
,
B.
Bertrand
,
N.
Rambal
,
L.
Hutin
,
C. C.
Escott
,
M.
Vinet
, and
A. S.
Dzurak
, “
Single-electron operation of a silicon-CMOS 2 × 2 quantum dot array with integrated charge sensing
,”
Nano Lett.
20
(
11
),
7882
7888
(
2020
).
23.
J.
Duan
,
M. A.
Fogarty
,
J.
Williams
,
L.
Hutin
,
M.
Vinet
, and
J. J. L.
Morton
, “
Remote capacitive sensing in two-dimension quantum-dot arrays
,”
Nano Lett.
20
(
10
),
7123
7128
(
2020
).
24.
G.
Scappucci
,
C.
Kloeffel
,
F. A.
Zwanenburg
,
D.
Loss
,
M.
Myronov
,
J.-J.
Zhang
,
S.
De Franceschi
,
G.
Katsaros
, and
M.
Veldhorst
, “
The germanium quantum information route
,”
Nat. Rev. Mater.
(published online,
2020
).
25.
M.
Lodari
,
A.
Tosato
,
D.
Sabbagh
,
M. A.
Schubert
,
G.
Capellini
,
A.
Sammak
,
M.
Veldhorst
, and
G.
Scappucci
, “
Light effective hole mass in undoped Ge/SiGe quantum wells
,”
Phys. Rev. B
100
,
041304
(
2019
).
26.
P.
Stano
,
C.
Hsu
,
L. C.
Camenzind
,
L.
Yu
,
D.
Zumb
, and
D.
Loss
, “
Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot
,”
Phys. Rev. B
99
,
085308
(
2019
).
27.
D. V.
Bulaev
and
D.
Loss
, “
Spin relaxation and decoherence of holes in quantum dots
,”
Phys. Rev. Lett.
95
,
076805
(
2005
).
28.
D. V.
Bulaev
and
D.
Loss
, “
Electric dipole spin resonance for heavy holes in quantum dots
,”
Phys. Rev. Lett.
98
,
097202
(
2007
).
29.
H.
Watzinger
,
J.
Kukučka
,
L.
Vukušić
,
F.
Gao
,
T.
Wang
,
F.
Schäffler
,
J. J.
Zhang
, and
G.
Katsaros
, “
A germanium hole spin qubit
,”
Nat. Commun.
9
,
3902
(
2018
).
30.
F. N. M.
Froning
,
M. K.
Rehmann
,
J.
Ridderbos
,
M.
Brauns
,
F. A.
Zwanenburg
,
E. P. A. M.
Bakkers
,
D. M.
Zumbuhl
, and
F. R.
Braakman
, “
Single, double, and triple quantum dots in Ge/Si nanowires
,”
Appl. Phys. Lett.
113
,
073102
(
2018
).
31.
A.
Sammak
,
D.
Sabbagh
,
N. W.
Hendrickx
,
M.
Lodari
,
B.
Paquelet Wuetz
,
A.
Tosato
,
L. R.
Yeoh
,
M.
Bollani
,
M.
Virgilio
,
M. A.
Schubert
,
P.
Zaumseil
,
G.
Capellini
,
M.
Veldhorst
, and
G.
Scappucci
, “
Shallow and undoped germanium quantum wells: A playground for spin and hybrid quantum technology
,”
Adv. Funct. Mater.
29
,
1807613
(
2019
).
32.
N. W.
Hendrickx
,
D. P.
Franke
,
A.
Sammak
,
M.
Kouwenhoven
,
D.
Sabbagh
,
L.
Yeoh
,
R.
Li
,
M. L.
Tagliaferri
,
M.
Virgilio
,
G.
Capellini
,
G.
Scappucci
, and
M.
Veldhorst
, “
Gate-controlled quantum dots and superconductivity in planar germanium
,”
Nat. Commun.
9
,
2835
(
2018
).
33.
W. I. L.
Lawrie
,
H. G. J.
Eenink
,
N. W.
Hendrickx
,
J. M.
Boter
,
L.
Petit
,
S. V.
Amitonov
,
M.
Lodari
,
B.
Paquelet Wuetz
,
C.
Volk
,
S.
Philips
 et al, “
Quantum dot arrays in silicon and germanium
,”
Appl. Phys. Lett.
116
,
080501
(
2020
).
34.
W. I. L.
Lawrie
,
N. W.
Hendrickx
,
F.
Van Riggelen
,
M.
Russ
,
L.
Petit
,
A.
Sammak
,
G.
Scappucci
, and
M.
Veldhorst
, “
Spin relaxation benchmark and individual qubit addressability for holes in quantum dots
,”
Nano Lett.
20
(
10
),
7237
7242
(
2020
).
35.
N. W.
Hendrickx
,
W. I. L.
Lawrie
,
L.
Petit
,
A.
Sammak
,
G.
Scappucci
, and
M.
Veldhorst
, “
A single-hole spin qubit
,”
Nat. Commun.
11
,
3478
(
2020
).
36.
N. W.
Hendrickx
,
D. P.
Franke
,
A.
Sammak
,
G.
Scappucci
, and
M.
Veldhorst
, “
Fast two-qubit logic with holes in germanium
,”
Nature
577
,
487
491
(
2020
).
37.
R.
Pillarisetty
, “
Academic and industry research progress in germanium nanodevices
,”
Nature
479
,
324
328
(
2011
).
38.
S.
Tarucha
,
D. G.
Austing
,
T.
Honda
,
R. J.
van der Hage
, and
L. P.
Kouwenhoven
, “
Shell filling and spin effects in a few electron quantum dot
,”
Phys. Rev. Lett.
77
,
3613
(
1996
).
39.
S. D.
Liles
,
R.
Li
,
C. H.
Yang
,
F. E.
Hudson
,
M.
Veldhorst
,
A. S.
Dzurak
, and
A. R.
Hamilton
, “
Spin and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot
,”
Nat. Commun.
9
,
3255
(
2018
).
40.
W. H.
Lim
,
C. H.
Yang
,
F. A.
Zwanenburg
, and
A. S.
Dzurak
, “
Spin filling of valley–orbit states in a silicon quantum dot
,”
Nanotechnology
22
,
335704
(
2011
).
41.
S. M.
Reimann
and
M.
Manninen
, “
Electronic structure of quantum dots
,”
Rev. Mod. Phys.
74
,
1283
(
2002
).
42.
L.
DiCarlo
,
H. J.
Lynch
,
A. C.
Johnson
,
L. I.
Childress
,
K.
Crockett
,
C. M.
Marcus
,
M. P.
Hanson
, and
A. C.
Gossard
, “
Differential charge sensing and charge delocalization in a tunable double quantum dot
,”
Phys. Rev. Lett.
92
,
226801
(
2004
).
43.
T.
Hensgens
,
T.
Fujita
,
L.
Janssen
,
X.
Li
,
C. J.
Van Diepen
,
C.
Reichl
,
W.
Wegscheider
,
S.
Das Sarma
, and
L. M.
Vandersypen
, “
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array
,”
Nature
548
,
70
73
(
2017
).
44.
F. van Riggelen, N. Hendrickx, W. Lawrie, M. F. Russ, A. Sammak, G. Scappucci, and M. Veldhorst (
2021
). “
Data accompanying the publication: A two-dimensional array of single-hole quantum dots
,” 4TU.ResearchData. .

Supplementary Material

You do not currently have access to this content.