Young's modulus of Fe-catalyzed silicon carbide (SiC) nanowires was measured in the temperature range of 300–575 K by the use of a laser Doppler vibrometer. The nanowires have a face-centered cubic structure grown along the [111] direction and exhibit different cross-sectional geometries, including circle, rectangle, hexagon, ellipse, trapezoid, and triangle. When the effective diameters of the nanowires decrease from 200 to 55 nm, their room-temperature Young's modulus decreases from ∼550 GPa (the bulk value) to ∼460 GPa, i.e., a reduction of ∼16%, and their temperature coefficient of Young's modulus varies from 47.4±1.7 ppm/K (the bulk value) to 78.1±5.9 ppm/K, i.e., a change of ∼65%. The size and temperature dependency of the modulus would greatly benefit the design and fabrication of high-temperature mechanical sensors based on SiC nanostructures.

1.
P. M.
Sarro
,
Sens. Actuators, A
82
(
1
),
210
218
(
2000
).
2.
L.
Tong
,
M.
Mehregany
, and
L. G.
Matus
,
Appl. Phys. Lett.
60
(
24
),
2992
2994
(
1992
).
3.
H. P.
Phan
,
D. V.
Dao
,
K.
Nakamura
,
S.
Dimitrijev
, and
N. T.
Nguyen
,
J. Microelectromech. Syst.
24
(
6
),
1663
1677
(
2015
).
4.
S.
Perisanu
,
P.
Vincent
,
A.
Ayari
,
M.
Choueib
,
S. T.
Purcell
,
M.
Bechelany
, and
D.
Cornu
,
Appl. Phys. Lett.
90
(
4
),
043113
(
2007
).
5.
X. D.
Han
,
K.
Zheng
,
Y. F.
Zhang
,
X. N.
Zhang
,
Z.
Zhang
, and
Z. L.
Wang
,
Adv. Mater.
19
(
16
),
2112
2118
(
2007
).
6.
G.
Cheng
,
T.-H.
Chang
,
Q.
Qin
,
H.
Huang
, and
Y.
Zhu
,
Nano Lett.
14
(
2
),
754
758
(
2014
).
7.
S.
Wang
,
Y.
Wu
,
L.
Lin
,
Y.
He
, and
H.
Huang
,
Small
11
(
14
),
1672
1676
(
2015
).
8.
J. F.
Cui
,
Z. Y.
Zhang
,
D. D.
Liu
,
D. L.
Zhang
,
W.
Hu
,
L.
Zou
,
Y.
Lu
,
C.
Zhang
,
H. H.
Lu
,
C.
Tang
,
N.
Jiang
,
I. P.
Parkin
, and
D. M.
Guo
,
Nano Lett.
19
(
9
),
6569
6576
(
2019
).
9.
J. F.
Cui
,
Z. Y.
Zhang
,
H. Y.
Jiang
,
D. D.
Liu
,
L.
Zou
,
X. G.
Guo
,
Y.
Lu
,
I. P.
Parkin
, and
D. M.
Guo
,
ACS Nano
13
(
7
),
7483
7492
(
2019
).
10.
E. W.
Wong
,
P. E.
Sheehan
, and
C. M.
Lieber
,
Science
277
(
5334
),
1971
1975
(
1997
).
11.
W.
Li
and
T.
Wang
,
Phys. Rev. B
59
(
6
),
3993
4001
(
1999
).
12.
J.
Tersoff
,
Phys. Rev. B
39
(
8
),
5566
5568
(
1989
).
13.
W. R. L.
Lambrecht
,
B.
Segall
,
M.
Methfessel
, and
M.
van Schilfgaarde
,
Phys. Rev. B
44
(
8
),
3685
3694
(
1991
).
14.
D. H.
Lee
and
J. D.
Joannopoulos
,
Phys. Rev. Lett.
48
(
26
),
1846
1849
(
1982
).
15.
H. D.
Espinosa
,
B.
Peng
,
N.
Moldovan
,
T. A.
Friedmann
,
X.
Xiao
,
D. C.
Mancini
,
O.
Auciello
,
J.
Carlisle
,
C. A.
Zorman
, and
M.
Merhegany
,
Appl. Phys. Lett.
89
(
7
),
073111
(
2006
).
16.
S.
Wang
,
Z.
Shan
, and
H.
Huang
,
Adv. Sci.
4
(
4
),
1600332
(
2017
).
17.
S.
Perisanu
,
V.
Gouttenoire
,
P.
Vincent
,
A.
Ayari
,
M.
Choueib
,
M.
Bechelany
,
D.
Cornu
, and
S. T.
Purcell
,
Phys. Rev. B
77
(
16
),
165434
(
2008
).
18.
J. Y.
Ma
,
Y. P.
Liu
,
P. D.
Hao
,
J.
Wang
, and
Y. F.
Zhang
,
Sci. Rep.
6
,
18994
(
2016
).
19.
H.
Zhang
,
W. Q.
Ding
, and
D. K.
Aidun
,
J. Nanosci. Nanotechnol.
15
(
2
),
1660
1668
(
2015
).
20.
Z. J.
Lin
,
L.
Wang
,
J.
Zhang
,
X.-Y.
Guo
,
W.
Yang
,
H.-K.
Mao
, and
Y.
Zhao
,
Scr. Mater.
63
(
10
),
981
984
(
2010
).
21.
J.
Wang
,
C. S.
Lu
,
Q.
Wang
,
P.
Xiao
,
F. J.
Ke
,
Y. L.
Bai
,
Y. G.
Shen
,
X. Z.
Liao
, and
H. J.
Gao
,
Nanotechnology
23
(
2
),
025703
(
2012
).
22.
Y. F.
Zhang
,
M.
Nishitani-Gamo
,
C. Y.
Xiao
, and
T.
Ando
,
J. Appl. Phys.
91
(
9
),
6066
6070
(
2002
).
23.
T.-H.
Chang
,
G.
Cheng
,
C.
Li
, and
Y.
Zhu
,
Extreme Mech. Lett.
8
,
177
183
(
2016
).
24.
L.
Hou
,
L.
Zheng
,
S.
Wang
, and
H.
Huang
,
AIP Adv.
9
(
8
),
085101
(
2019
).
25.
A.
Roy
,
S.-P.
Ju
,
S.
Wang
, and
H.
Huang
,
Nanotechnology
30
(
6
),
065705
(
2019
).
26.
L. H.
Liang
,
M. Z.
Li
,
F. Q.
Qin
, and
Y. G.
Wei
,
Philos. Mag.
93
(
6
),
574
583
(
2013
).
27.
H.
Sun
,
L.
Chen
,
S.
Sun
, and
T.-Y.
Zhang
,
Sci. China Technol. Sci.
61
(
5
),
687
698
(
2018
).
28.
E. J.
Boyd
,
L.
Li
,
R.
Blue
, and
D.
Uttamchandani
,
Sens. Actuators, A
198
,
75
80
(
2013
).
29.
Z.
Li
and
R. C.
Bradt
,
J. Mater. Sci.
22
(
7
),
2557
2559
(
1987
).
30.
Z.
Wang
,
X.
Zu
,
F.
Gao
, and
W. J.
Weber
,
Phys. Rev. B
77
(
22
),
224113
(
2008
).
31.
R. S.
Wagner
and
W. C.
Ellis
,
Appl. Phys. Lett.
4
(
5
),
89
90
(
1964
).
32.
S.
Wang
,
L.
Hou
,
H.
Xie
, and
H.
Huang
,
Appl. Phys. Lett.
107
(
10
),
103102
(
2015
).
33.
L.
Hou
,
J. L.
Mead
,
S.
Wang
, and
H.
Huang
,
Appl. Surf. Sci.
465
,
584
590
(
2019
).
34.
J. L.
Mead
,
S.
Wang
,
S.
Zimmermann
, and
H.
Huang
,
Nanoscale
12
(
15
),
8237
8247
(
2020
).
35.
J. L.
Mead
,
H.
Xie
,
S.
Wang
, and
H.
Huang
,
Nanoscale
10
,
3410
3420
(
2018
).
36.
R. D.
Blevins
,
Formulas for Natural Frequency and Mode Shape
(
Van Nostrand Reinhold
,
New York
,
1979
).
37.
S.
Wang
,
Q.
Huang
,
Y.
Wu
, and
H.
Huang
,
Nanotechnolgy
27
(
47
),
475701
(
2016
).
38.
D. J.
Zeng
and
Q. S.
Zheng
,
Phys. Rev. B
76
(
7
),
075417
(
2007
).
39.
X. Q.
Chen
,
S. I.
Zhang
,
G. J.
Wagner
,
W. Q.
Ding
, and
R. S.
Ruoff
,
J. Appl. Phys.
95
(
9
),
4823
4828
(
2004
).
40.
X.
Yuan
,
J.
Yang
,
J.
He
,
H. H.
Tan
, and
C.
Jagadish
,
J. Phys. D
51
(
28
),
283002
(
2018
).
41.
D. N.
Talwar
and
J. C.
Sherbondy
,
Appl. Phys. Lett.
67
(
22
),
3301
3303
(
1995
).
42.
C. Q.
Chen
,
Y.
Shi
,
Y. S.
Zhang
,
J.
Zhu
, and
Y. J.
Yan
,
Phys. Rev. Lett.
96
(
7
),
075505
(
2006
).
43.
Y. B.
Wang
,
L. F.
Wang
,
H. J.
Joyce
,
Q.
Gao
,
X. Z.
Liao
,
Y. W.
Mai
,
H. H.
Tan
,
J.
Zou
,
S. P.
Ringer
,
H. J.
Gao
, and
C.
Jagadish
,
Adv. Mater.
23
(
11
),
1356
1360
(
2011
).
44.
Y.
Zhu
,
F.
Xu
,
Q. Q.
Qin
,
W. Y.
Fung
, and
W.
Lu
,
Nano Lett.
9
(
11
),
3934
3939
(
2009
).
45.
Z.
Liu
,
I.
Papadimitriou
,
M.
Castillo-Rodríguez
,
C.
Wang
,
G.
Esteban-Manzanares
,
X.
Yuan
,
H. H.
Tan
,
J. M.
Molina-Aldareguía
, and
J.
Llorca
,
Nano Lett.
19
(
7
),
4490
4497
(
2019
).
46.
B.
Wu
,
A.
Heidelberg
, and
J. J.
Boland
,
Nat. Mater.
4
(
7
),
525
529
(
2005
).
47.
T.-Y.
Zhang
,
M.
Luo
, and
W. K.
Chan
,
J. Appl. Phys.
103
(
10
),
104308
(
2008
).
48.
J. J.
Petrovic
,
J. V.
Milewski
,
D. L.
Rohr
, and
F. D.
Gac
,
J. Mater. Sci.
20
(
4
),
1167
1177
(
1985
).
49.
P.
Hu
,
S.
Dong
,
X. H.
Zhang
,
K. X.
Gui
,
G. Q.
Chen
, and
Z.
Hu
,
Sci. Rep.
7
,
3011
(
2017
).
50.
C. M.
Su
,
M.
Wuttig
,
A.
Fekade
, and
M.
Spencer
,
J. Appl. Phys.
77
(
11
),
5611
5615
(
1995
).
51.
M.
Pozzi
,
M.
Hassan
,
A. J.
Harris
,
J. S.
Burdess
,
L.
Jiang
,
K. K.
Lee
,
R.
Cheung
,
G. J.
Phelps
,
N. G.
Wright
,
C. A.
Zorman
, and
M.
Mehregany
,
J. Phys. D
40
(
11
),
3335
3342
(
2007
).
52.
H.
Ogi
,
S.
Kai
,
T.
Ichitsubo
,
M.
Hirao
, and
K.
Takashima
,
Philos. Mag.
83
(
4
),
503
512
(
2003
).
53.
M. A.
Haque
and
M. T. A.
Saif
,
Thin Solid Films
484
(
1
),
364
368
(
2005
).
54.
D. S.
Agosta
,
R. G.
Leisure
,
K.
Foster
,
J.
Markmann
, and
J. J.
Adams
,
Philos. Mag.
88
(
6
),
949
958
(
2008
).
55.
D.
Leisen
,
R.
Rusanov
,
F.
Rohlfing
,
T.
Fuchs
,
C.
Eberl
,
H.
Riesch-Oppermann
, and
O.
Kraft
,
Rev. Sci. Instrum.
86
(
5
),
055104
(
2015
).
56.
X.
Zhao
,
F.
Yang
,
H.
Zhang
, and
P.
Xiao
,
J. Raman Spectrosc.
43
(
7
),
945
948
(
2012
).
57.
A.
Wolfenden
,
J. Mater. Sci.
32
(
9
),
2275
2282
(
1997
).
You do not currently have access to this content.